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NOTATION

Radius of a circle, or a constant
Constant
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Constant

Continuity parameter
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Non dimensional radius
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K(x,y) Kernel function of integral equation
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A L Number of control point per panel

LE Leadding edge of airfoil
n Normal to a surface
N Number of panels
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Pu Control point on a panel
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- formulation
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Qe Unknown singularity strength
Q Number of terms in singularity series
QS Total source strength
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[ &
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TE

u(x)
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x’Y’z
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X/c, V/c
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a

8

Surface

Unknown error in normal velocity

Thickenss to chord ratio
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Coordinate used in reverse curvature
formulation

Tangential velocity aerodynamic influence
coefficient matrix
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Eigenfunction of integral equation
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Panel curvature
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tl - € Positive constant, or small angle
£ Coordinate for approximating curve
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| ABSTRACT
\

:SA new two dimensional panel method has been developed.
This method uses a new approximating element; the circular
arc, and a new singularity representation; the sine series,
and all integrations are performed analytically for maximum
computational efficiency. The method was applied to a
circular cylinder and to several different types of
airfoils, and a number of characteristics which define the
method were varied to determine their effects on the
solution.

The body 1is represented by a series of circular. arcs
which are defined by sets of three points on the surface.
The singularity distribution is modeled by a power series
expansion in terms of the sine of an angular variable which
is related to the arc length of each panel. The method was
applied to the problem of flow over a circular cylinder, and
characteristics which define the method were varied.
Results indicated that accuracy was not significantly
affected by the type of singularity; while dramatic
reductions 1in velocity errors were achieved by increasing
the number of terms in the singularity series. Further,
increasing the number of panels also increased the accuracy

of the solution, the effect of singularity continuity was

xvii
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more apparent in the smoothness of the resulting velocity
distributions than in the accuracy of the solutions, the
method was not critically sensitive to control point
location, and the method was found to be computationally
efficient as the number of terms in the series was
increased.

The method was then applied to a Joukowski airfoil, a
NACA 0024 airfoil, a thin symmetric airfoil, and to both a

symmetric and a cambered Karman-Trefftz airfoil.

\

‘\--§7Major conclusions from this study were that the method

produced very accurate solutions over the major part of the
airfoil, error reduction occured as both the number of
panels and the number of terms in the series were increased,
the effect of point source location was large but was local
and could be controlled, the method was generally
insensitive to minor variations in panelling, and the
accuracy of the solution increased as panel curvature was

increased from relatively flat to circular. —

\\
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COMPUTATION OF INCOMPRESSIBLE POTENTIAL

i:f FLOW OVER AN AIRFOIL USING A HIGH ORDER
AERODYNAMIC PANEL METHOD BASED ON

CIRCULAR ARC PANELS

I. Introduction

The central problem in aerodynamics is to predict the

pressures, forces, and moments exerted on a body immersed in

a flowing fluid. One would like to be able to solve the

full Navier-Stokes equations for any configuration at one's

- desk, but this is not possible today. Fortunately the real
needs of the engineering, research, and development
community both in the Air Force and in industry allow this

problem to be approached from several different levels. At

one level is the engineer who requires the details of a full

“

viscous solution, and is willing to spend the time and
computer resources required, and to accept the limitations
in geometric complexity which in some cases are necessary,
in order to obtain solutions of this nature. At the other
extreme 1is the engineer involved in perhaps a preliminary
design application. His requirement is for very rapid
solutions for general configurations which can be used to

develop airfoil or aircraft performance characteristics. He




might also require the capability for rapid development of

parametric studies to assess effects of small changes in
geometry or flight conditions on the flow over an airfoil, a
wing, or a full aircraft configuration.

While it is true that much progress has been made over
the last several years in the development of both Navier-
Stokes solutions and non-linear potential solutions, these
areas cannot as yet satisfy the engineering requirements
described above, For this reason much interest and
attention has been (and continues to be) focused on the
development and improvement of linear potential flow
solutions in general, and in the panel method approach to
obtaining such solutions in particular. The features of the
panel method approach which make it particularly attractive
are 1its computational efficiency, and its ability to
accommodate accurate geometric modeling. In addition, it
has been found that the linear potential flow model provides
sufficient accuracy for many engineering applications, and
indeed the panel method approach is used on a daily basis by
industry and government workers to solve a wide variety of
two and three dimensional aerodynamic problems.

Given the unquestioned value and utility of the panel
method approach to solving the 1linear potential flow
problem, the general goal of this dissertation, which will
be discussed further in this chapter, is to‘ develop and

investigate a particular panel method approach in order to

B
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add to the level of understanding of such methods. The
purpose of this chapter, then, 1is to review the importance
of this theory and discuss the assumptions which led to it;
to formulate the mathematical statement of potential flow
over a body; to review and note 1limitations of current
methods for solving this problems; and to present the

objective of this dissertation.

Linearized Potential Flow

The ability of the linearized potential flow equation
to accurately model flow fields about realistic flight
vehicle configurations over a wide range of realistic flight
veiticle configurations over a wide range of flight
conditions is well known to aerodynamicists. These results
are used 1in two ways. First, they can predict 1ift,
moments, and induced drag for complex vehicles, and second,
they can be used as input to boundary 1layer calculations
which will predict friction drag and separation. In fact,
the accuracy of boundary layer calculations is generally
dependent on the accuracy of the input potential flow
solution,.

The basic assumptions leading to potential flow are
that the fluid is inviscid, non-heat conducting, isentropic,
and irrotational. The success of the theory lies 1in the
fact that for the flow of air over a body the effects of

viscosity and heat transfer are confined to the boundary
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appiicab’e, and in fact form the basis of the solution
method to be used in this study.

A crucial step in the solution of Laplace's equation is
the application of boundary conditions. In small
disturbance theory the boundary conditions are often applied
on a plane rather +than on the actual surface of the
configuration. Although this linearization of the boundary
conditions is justified if the body is thin and if the angle
of attack is small, it produces a non-physical singularity
at the airfoil leading edge. This singularity can be
removed, however, by applying the boundary conditions on the
actual surface of the configuration, even though the
governing equation was derived using small perturbation
assumptions. This ability to apply boundary conditions
exactly and in a convenient way is an important feature of

the panel method approach to solving the potential flow

problem.

Statement of the Problem

The mathematical problem of potential flow about the

exterior of a body may be formulated in the following

manner. Consider a closed surface, S, (Figure 1) immersed
in' a flow with free stream velocity Vw . Let
V=7V +% (3)

-]

where V is the total velocity and v is a perturbation
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Figure 1 - Flow Over an Arbitrary Body
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velocity. Now vV is irrotational; therefore
->
v = Vo (4)

where ¢ is the perturbation potential. Assuming ! =0

for convenience, the governing equation for the flow becomes
V2¢= 0 (5)

in the region exterior to S . The boundary conditions for
this problem are that the surface is impermeable, and the

perturbation velocities are zero at infinity. That is,

|v¢| - 0 at infinity (6a)

-+ <> -

Véen + V_+ n =0 on S (6b)
where n is the outward surface normal vector on S
Once a solution for ¢ is determined, the pressure on S

is found from Bernoulli's equation as

c =1 . 1¥l2 (7)

Jdany approaches have been used to solve the problem
posed in equations five and six, including conformal
mapping, finite difference, finite element, and singularity
methods, Conformal mapping methods (Refs 3,4) have been

used to obtain accurate solutions in two dimensional cases,
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but they can not be extended to three dimensions. The
problem with wusing a conformal mapping approach 1is the
generation of mappings for arbitrary shapes.

There are many finite difference methods (Refs 5,6,7,8)
which solve the exterior potential flow problem, but they
are usually applied to the linear one represented by Eq 5.
These methods use transformations to map the physical space
into a computational space in which boundary conditions can
be applied with less difficulty. Results for general two
dimensional shapes have been obtained, but the methods have
only 1limited ability to handle complex three dimensional
geometry. Disadvantages of finite difference methods as
applied to either the linear or non-lihear problem are that
the solution must be found throughout the entire flow field
and that computer time and storage requirements are large
(even in twé dimensions).

A newer approach is the finite element technique (Refs
9,10,11). Developed initially as a structural analysis
tool, there has been considerable application of the method
to fluid dynamics problems. It has had, however, relatively
little application to problems involving complex geometric
configurations, and shares with finite difference methods
both the disadvantage of requiring a solution throughout the
flow field, and the advantage of being applicable to the
non-linear formulation of the problem.

Finally, singularity methods have been used for many




. ".‘L.‘T' K

L e e B a g s
-~ 8 el s .
-' M R W- .

——

¢

a plane surface (for example, the camber line of a wing or
airfoil) with no thickness to model the desired
configuration.

Compared to a discrete singularity method, a panel
method (or actually any distributed singularity method) has
advantages which are related to the order of the
singularity. One cannot compute flow quantities at a point
singularity because they are mathematically undefined there.
One can, however, make such computations on a panel
containing a distributed singularity, except at the
endpoints of the panel where the flow quantities are again
singular. However, this singularity is of a lower order than
the point singularity. This means that for a given level of
accuracy one can perform computations closer to the
endpoints of the distributed singularity panel than one can
to the point singularity. This is important because most
configurations of interest contain regions where one part of
the surface is near another part of the surface. An example
would be the upper and lower surfaces at the trailing edge
of a wing or airfoil.

Compared to finite difference (FD) and finite element
(FE) methods, panel methods may require 1less computer
resources for a given configuration and level of accuracy.
The reason for this is that to solve a three dimensional
problem, the FD or FE method must solve a partial

differential equation in three independent variables,

10
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differential equation in three independent variables.
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This requires generation of a mesh of grid points which

fills the volume of the flow field. To solve the same

problem , the panel method must solve a two dimensional
integral equation. This requires generation of a mesh of
grid points only on the surface of the configuration. In

effect, the dimension of the problem that must be solved has
been reduced by one. This reduction also occurs if the
original problem is that once the panel method solution has
been obtained, the flow quantities can be determined at any
other point in the flow field by a simple matrix
multiplication. This is in contrast to the FD or FE methods
for which the solution in the flowfield is computed
certainty only at the grid points used to obtain it. One
could, of course, interpolate these values, but to obtain
velocities, for example, from a solution for potential, one
would have to use a numerical differentiation scheme of some
sort which would introduce additional inaccuracy into the
result.

Another advantage of the panel method compared to a FD
method 1is that the panel method ¢an often model complicated
geometries more easily. The reason for this is that FD
methods often require a coordinate system which is fitted to
the configuration surface in order to simplify application
of boundary conditions,. Generation of this coordinate

system can in itself require the numerical solution of a set

11
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of partial differential equations. The panel
method, however, requires only the surface geometry as input.

Although the advantages of panel methods as described
above are important, it must be remembered that the method
gives a 1linearized potential flow solution to a given
problem. Both FD and FE methods are applicable to the non-
linear problem (potential and non-potential) as well. There
are many situations in which a non-linear solution about a
simplified configuration is more useful than a linearized
potential flow solution about a more detailed and exact
geometric representation of the configuration. Conversely,
it is also true that there are a great many applications for
which the linearized potential flow solution is satisfactory
and in these cases 1its characteristics of geometric
complexity and computational efficiency are highly

desireable.

Literature Review

The basic theory behind the use of a panel method to
solve the potential flow problem (a review of which is
given by Hess, Ref. 12) was developed from the priuciples of
potential theory (Ref. 13,14). The practical application of
the method was not feasible, however, until the digital
computer became available. Since the early 1960's work in
this area has increased greatly from initial efforts at

computing axisymmetric and non-lifting three dimensional

12
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flow, through higher order lifting two dimensional flow, and
lifting three dimensional flow, to the present day where
complex configurations are being calculated 1in supersonic
flow. This review will cover the major two dimensional
panel methods available today, followed by a discussion of
representative three dimensional work, and will conclude
with a summary of limitations in the methods available at
the present time.

Two Dimensional Methods. A large number of two

dimensional methods have been developed over the past
several years. Since many of them are similar in concept, a
representative sample illustrative of different approaches
has been selected for discussion. Table I presents some
general characteristics and unique features of these
methods.

Hess's 1low order method (Ref 18) used constant source
and vorticity distributions on flat panels. His higher
order method (Ref 15,16) models the surface as a series
expansion, truncated such that the representation is
parabolic, while the integrand in the velocity influence
integral is expanded in a series that assumes the surface is
nearly flat. The method also used source and vorticity
distributions in which the vorticity is assumed to vary
parabolically in arc length from the trailing edge of the
airfoil through the leading edge and back to the trailing

edge where it is zero. The higher order method shows

13




AN i L e oste sene e

‘Buyddey
fewavjuny sasq

a3j3weaey
10447 S3SN UO})
-1puo) ejany

cadj3wWeaey
10423 s3sn uot}
-{puo) e1yny

SJUIMUO Y

alqissaadmodug

31qissasdwodug

o1qLssaadmodu|

a1qissatduodruy

aLqissaadwodug

abuey yoey

{eattauny

Ledpaauny

Leatsauny

3134 euy

2134 euy

uoyjeabajuj

SPoOY3Ial lauey |PUO}SUAWLQ~OM]

K320 a4

tetiuazod
g A3100(9p

A3100(3p

Le1uajogd
404293U]

A312013p

‘puoy Aaepunog

[P

‘uol]
-ejuasaaday A31013404
fedpJaauny deaut 2 fey
uopjejuas Ayid1340)
~aaday Je3ul
Led148uWny 324N0S Je3ul €€ FEXTED]
(uoysued A31o11407
-~X3 $9143s) Jjtoqeaey
J134€Nl)  224n0S ae3ULT g82-6l Meysuay
?d%uanog
(uoy sued jueysuo) <
-xa sajaas) K31313404 (mo1syag) — 1
Jp{oqesed Je3uty 1€-62 sey{bnog
{uoysued 31313400
-X3 $3}43s) Ji10qeaey (ssayn)
Jptoqeaed 934N0OS A€3ULTY 8Ll-G1l seybnog
fuyjauey Kjpaenbugs $33Y pPOYI 9N
‘1T 378Vl
4
!
f
4
ORIV - 1 —aaa Al BRI M |




increased accuracy over the lower order method, particularly
for internal flows.

lenshaw (Refs 19-28) has developed a variant of Hess's
higher order method which wused a quartic polynomial
representation of the surface, and which expands the
velocity influence integrand about a circular arc rather
than about a flat panel. He-reports an improved accuracy
with this formulation but his results are difficult to
interpret. Henshaw has also formulated an approach using
vorticity only, with an error paraméter which allows
specification of circulation. This parameter is added to
the 1left hand side of the boundary condition equations with
a coefficient which is specified according to certain
criteria.

Bristow (Refs 29-31), using less's basic as well as his
higher order method has formulated two interesting
approaches to the problen. Using the basic method, he has
incorporated a singularity strength minimization procedure
which reduces source strength gradients, and thus errors in
tangential velocities. Using the higher order method, his
formulation allows a priori determination of the source
strengths, coupled with an error parameter approach to
obtaining the vorticity strengths. The second method also
produces singularity strengths with mild gradients and good

accuracy, but at lower computing cost than the first. Both
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of taese methods have a design capability as well.

The methods of Raj (Ref 32) and Keller (Ref 34) provide
different approaches. Raj used a piecewise linear vorticity
distribution on a surface described numerically, and all the
integrations are performed numerically in the physical
airfoil plane. His results are accurate, but the method is
time consuming. Keller's approach 1is to generate a
transformation which maps an airfoil into a near circle. He
then performs all integrations numerically in the circle
plane. This 1is advantageous because the integrals are
easier to integrate numerically on a circular or nearly
circular surface than on an arbitrary surface. This method
is not, however, extendable to three dimensions.

Three Dimensional Methods. A significant amount of

work has been done in the area of three dimensional panel
methods. Characteristics of the more important of these are
shown in Table II. These methods will be discussed further
in the following.

Hess's method (Refs 18,34,35) was the first surface
paneling method applicable to arbitrary geometries. It is
an incompressible method which uses flat panels to model a
configuration. Constant sources are used on body panels
while constant vorticity is used on wing panels. The wing
panels are lumped into chordwise strips over which a
parabolic distribution of vorticity is placed, so that only

one vorticity unknown is associated with each strip. A
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Kutta condition is applied at the trailing edge of each
strip to obtain this unknown, while the source unknowns are
found by applying a normal velocity boundary condition on
each panel. Hess has also developed a higher order three
dimensional method (Ref 36) which is basically an extension
of his two dimensional work. The new method has shown an
improved accuracy for a given number of panels, but is at
present a non-lifting method.

Woodward's basic method (Ref 37) was the first unified
(subsonic and supersonic) method for general configurations.
It modeled a surface with flat panels, which were not
necessarily contiguous. Linear sources and constant
vorticity were distributed on the panels to account for lift
effects and 1line sources and doublets provided body
thickness effects. A normal velocity boundary condition was
applied at a control point whose location was chosen so as
to provide the best results. This method was successful,
but was limited in the degree of geometric complexity that
it could model, and was sensitive to control point
placement.

In 1973 an improved version of the method (Ref 38) was
presented which retained a flat panel surface representation
but wused linear source and linear vorticity singularities,
and which had planar and non-planar boundary condition

options. Linear sources were distributed on body surface

18
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panels for both options, while on wing panels the planar
option used linear source and vorticity distributions, and
the non-planar option used only linear vorticity. A normal
velocity boundary condition was applied at a control point
located at a panel centroid. This method allowed more
accurate modeling of body shapes and exhibited reduced
sensitivity to control point location. There was a
difficulty, however, in wusing the non-planar option in
supersonic flow because the panels exhibited discontinuities
in slope and position,. This caused disturbances to
propagate downstream inside the configuration being modeled
(that is, in the non-physical interior flow) in such a way
as to eventually destroy the solution on the exterior of the
body.

Woodward has recently developed a solution to this
problem (Ref 39) using a combined source and vortex called a
triplet singularity. This singularity controls the interior
flow Dby cancelling perturbation velocities there without
explicitly applying boundary conditions in the interior
region. This approach has shown good results when applied
to bodies, but has yet to be applied to wings, or more
general configurations.

Robert's method (Refs 40-42) uses surface sources and
internal doublet sheets to compute subsonic flow about
general configurations. The surface is mapped to a

parametric plane where it is represented as a bicubic

19




spline, and the singularity distributions are modeled as
bicubic splines on this surface. This approach is capable
of yielding very accurate solutions, but all the mappings
and the integrations of the influence coefficients are done
numerically; thus an extremely large amount of computer time
is required to obtain a solution. For this reason the
method has not been widely used.

Morino's method (Refs 43-45) is a general method for
unsteady subsonic or supersonic flow over arbitrary
configurations. It uses constant source and dcublet
distributions on hyperboloidal surface panels, with an
interior potential boundary condition. Preliminary results
using this method seem to be good, but it has not been
tested extensively to date. It should be emphasized that
the method was developed to solve the general unsteady
problem, and is perhaps the most advanced in this area,

Over the past ten years, researchers at the Boeing
Company have developed a general subsonic and supersonic
method applicable to arbitrary configurations. The method
has evolved from a low order subsonic method to a higher
order supersonic method known as the PANAIR (Paneling
Aerodynamics) system., In 1967 Rubbert et al (Ref 46)
described a subsonic method using flat panels with a surface
distribution of constant sources, and an interior doublet

distribution. The method produced good results, but the use

20




of the internal lifting system, coupled with the use of flat
panels 1limited the degree of geometric complexity which
could be easily and accurately modeled.

In 1972 Rubbert and Saaris (Ref 47) presented
additional results using the same basic method, but with the

addition of internal singularity sheets which were used to

maintain an internal flow which (although of no physical

interest) would improve the external flow characteristics.
This method was sensitive to the paneling arrangement since
it was a low order method.

To correct some of these problems, Johnson and Rubbert
(Ref 48) developed a higher order subsonic method. Key
features were the use of linear sources and quadratic
doublets distributed on curved panels, with internal doublet
sheets to provide 1lift effects. Since these panels were
developed by fitting, in a least squares sense, parabolic
curves through the actual surface points, the panels were
discontinuous. Further, the panels were restricted to being
only slightly curved through the use o0f a near field
expansion for calculating the influence coefficients. A far
field expansion was also used to increase computational
efficiency. Results were obtained for a randomly paneled
sphere and winé, which indicated the versatility of the
method.

The method was then extended to supersonic flow by

Ehlers, Johnson, and Rubbert (Ref 49) using linear sources
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and quadratic doublets on slightly curved panels with a
linearized mass flux boundary condition instead of the usual
velocity boundary condition. In addition, an internal
potential boundary condition was used to control
disturbances in the interior flow which tended to amplify as
they were reflected by the interior surface and which would
perturb or destroy the exterior solution. This approach
also allowed a-priori determination of source strengths
which reduced the order of the system of linear equations
which had to be solved. Results were presented for a
randomly paneled spindle, an inlet with nacelle, and several
wings which showed excellent agreement between experiment or
theory, and the computed results. A problem developed
however, because both the paneling and the doublet
distribution (which was found wusing a least squares
approach) were slightly discontinuous. This generated
singularities which propagated along Mach 1lines with
undiminished strength, and which, if downstream control
points were too close, could cause the influence coefficient
matrix to be singular.

The solution to this problem, given by Ehlers et al
(Refs 50-52) was to replace the discontinuous curved panel
concept by a continuous flat panel concept. Previous flat
panel methods used four input corner points to define a

single flat panel which did not necessarily pass through the
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input points. This new method used four input corner points
to define five planar subpanels which passed through the
corner points and which were continuous with all neighboring
panels, The result modeled a surface with continuous flat
panels, and allowed the quadratic doublet distributions on
each subpanel to be exactly continuous along all edges.
This method has produced good results to date (Ref 53), and
is the first higher order supersonic method capable of
accurately modeling extremely complex geometric
configurations.

In general, 1low order three dimensional panel methods
are fairly complex, require 1large numbers of panels to
achieve a reasonable accuracy, and are sensitive to panel
and control point placement. The higher order methods have
reduced the number of panels required to achieve the same or
better accuracy, but at a cost of increased complexity and
computational requirements. Some comparisons between
several of these methods are given by Thomas and Miller (Ref

54), and Landrum and Miller (Ref 55).

Objective of Dissertation

The motivation for studying linear potential flow
methods in general and panel methods in particular stems
from the proven usefulness of these methods in a wide range
of engineering and research activity. It has also been

shown that current available methods are in general
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complicated require in many cases large numbers of panels to
achieve a given level of accuracy, and require a 1large
degree of expertise on the part of the user in order to
obtain satisfactory results., A partial reason for these
deficiencies 1is that the influence of a number of the
characteristics that define the panel method approach, in
both two and three dimensional cases, are not adequately
understood. These characteristics include panel curvature,
singularity distribution continuity, type of singularity,
order of the singularity approximation, the type of boundary
condition, the numerical implementation of the Kutta
condition, and control point location., The question of the
effects of these characteristics on solution accuracy for a
given method has not been fully answered.

The objective of this dissertation is to answer these
questions within the framework of a two dimensional
incompressible method as a first step in developing a fuller
understanding of the effects of these characteristics. The
results of such an investigation will provide guidance to
others who wish to develop two or three dimensional panel
methods for their own specific applications. To accomplish
this objective, a new two dimensional method, based on the
use of circular arc panels, has been formulated, and Las
been extensively tested in applications to the cases of flow
over a circular cylinder and flow over several types of

airfoils.
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The results have shown that accuracy increased as
additional terms in the series representing the singularity
distribution are kept, as panel curvature is varied from
flat to circular and as continuity of the vorticity
distribution is erforced. Additionally, the effect of
control point 1location has been found to be relatively
small, and the required number of panels for a given
accuracy has been found to be less than that required by the
method of Raj. The present method has also been compared to
Hess's higher order method as formulated by Bristow for a
thin airfoil, and has been found to give a small improvement
in computed perturbation velocities,

The following chapters of this dissertation will
discuss these points in detail. The next chapter will
briefly present some highlights of potential theory, and the
general panel method approach. Then the details of a new
paneling method based on circular arc panels will be
presented, followed by the application of this method to the
circular cylinder problem, and then to the airfoil problen.
Finally the conclusions resulting from this work and ideas
concerning possible extensions of the method will be

presented.
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II. Two Dimensional Potential Theory

The purpose of this chapter is to present briefly some
basic facts about potential theory and surface singularity
distributions which will have direct application to the work
that follows. It will be seen that the panel method
approach to solving flow problems is dependent on the
results of potential theory. Harmonic functions will first
be discussed from a partial differential equation viewpoint,
followed by a presentation of the Green's theorem
representation of a harmonic function. Some characteristics
of surface singularity distributions and some relevant
properties of integral equations will then be discussed.
Finally the reduction of the Green's theorem formulation to
an integral equation will be considered along with some

unresolved questions which arise in this formulation.

Harmonic Functions

Solutions to Laplace's equation are called harmonic
functions. Such functions have properties which allow the
development of the integral equation method which is the
basis of the panel method approach to solving Laplace's
equation. This equation has also been studied considerably
from a partial differential equation viewpoint in which one

determines conditions which guarantee the existence and
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uniqueness of solutions to a given equation which is subject
- to a particular specification of boundary conditions.
The general boundary value problem can be stated as

follows: find a function ¢ which satisfies V%¢ = 0 in a

region R and where either ¢ = f(s) or -%% = f(s) on the
boundary of R, and where f(s) 1is a known 'function. If

is specified, this problem 1is called a Dirichlet
i‘ problem; while if %% is specified, it is called a Neumann
".

problem. The existence and uniqueness of solutions to these

problems depends on whether R is an interior or exterior

region. Given that the boundary values are continuous and
that the boundary is sufficiently regular, Table III (Ref
14) summarizes the conditions for which these problems have
solutions.

These results from the theory of partial differential
equations will be wused to verify the correctness of the
integral equation formulation of the problem which leads to
the panel method solution to Laplace's equation. This
formulation 1is dependent on the property of harmonic

functions that is statel1 in Green's theorem.

Green's Theorem Formulation

Using Green's theorem, the value of a harmonic function
at any point in a region may be expressed in terms of its
value on the boundary of the region. This form may then be

interpreted as a singularity distribution on the boundary.




TABLE III

Boundary Value Problem Solutions

Boundary Region
Value Prob.
Interior Exterior
Dirichlet Solution No Solution
Neumann Solution* Solution

* If and only if

Green's

are single valued
formulated

harmonic functions,

Ry which are divided by a boundary curve B,

called a barrier

connected region which then insures that ¢

valued there.

13,14,56) that

6(P) = 7=

NlH

and

If P is a point in R,

f3¢d1=

theorem may be applied to harmonic functions

in some region, The

in two dimensions by considering (Figure 2)

¢ and and two regions,

é1 >

is required to make R a

will be

f(log r 22 . $3= (log r)) dl
B
f ) 2= (log r) db
o an g
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which

problem may be

two

and

The curve b is
simply
single

it can be shown (Refs

(8)
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n
A
Region R' ¢+
Potential ¢, R ®
[ A

barrier b

Region R

Potential ¢

Curve B

Figure 2. Green's Theorem Formulation.
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and also that

0=k F Qogr oo Laograi=o (9
B

Adding Eqs 8 and 9 gives
- L)
¢(P) = -2—%- f(log r(g—g - 3%) - (%=~ ¢1)-§—(10g r))dl
n
B
(10)

S A O S W SIS
b

Equations 8 and 10 show that ¢ is not uniquely determined
until both ¢ and ¢, are specified on B, This means that
the solutions for R and R; are independent in the sense that
the solution could be changed in one region without changing

the solution in the other region.

Velocity Potential. If ¢ and ¢, are assumed to be
velocity potential functions and if o = %% - %%i and
W= -9 then Eq 10 becomes

¢(P) = %;' ]{ (6 log r - u %K(log r)) dl
B

(11)

1 + -.9
+ 5T f(<b = ¢ )xp(log r) db
b
The first integral in this equation can be interpreted as

the potential due to a source distribution of

strength and a doublet distribution of strength uy on B
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while the second can be interpreted as the potential due to
a doublet distribution of strength u on b. As noted
above, ¢ 1is not unique unless both o and yu are
determined. One procedure would be to specify a-priori
either o or u , and then apply another boundary
condition to determine the remaining unknown. This 1is
equivalent to specifying the solution in R; and then solving
for the solution in R.

Suppose ¢ 1is specified on B to be g =0 . Then Eq

10 becomes

lH

¢(P) =

[\

5 1 f 3
= j[ Y (log r)dl + o A¢(§K(log r))db
B b

(12)

where

Since ¢ is a velocity potential A4 is the circulation
around B, and is constant. Also, since the location of b is
arbitrary, the normal and tangential derivatives of ¢ are
continuous across b (Ref 13). Therefore A¢ 1is constant on
b, and the second integral in Eq 12 represents a constant
strength doublet sheet extending to infinity and is
equivalent to a wake, If, however, y=0 on B, then Eq 10

becomes
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o(P) = 77 j[ g log r dl (13)
B

In this case | = (0 implies that ¢ = ¢, on B and thus
that o7 = ¢ because ¢, is single valued in R, ;
therefore the integral over b is zero. This also means that
one cannot obtain circulation, or l1lift, wusing a source

distribution only.

Stream Function. In the last section ¢ was assumed

to be a velocity potential function, although the general
formulation is not dependent on this interpretation.
Since ¢ may be any harmonic function, assume that it
represents a stream function v . If there are no sources
inside B then ¥ will be constant (single valued) on B
because it is a measure of the mass flux across the curve B,

+ -
Thus ¥ =y |, and the expression equivalent to Eq 10 is

V(P) = 53 f (log r (£ - oy (yyy)d(log r)) a1 (14
B

If it 1is assumed that Y= Yy on B, and that
Y = %2 - %%i then
b®) =32 § v log r a1 (15)
5 Y g
B
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Thus the stream function can be represented in terms of a
surface distribution of vorticity with strength v .
Although Eq 15 does not contain a wake term as does Eq 12,

it does not necessarily represent a zero circulation case.

Doublet-Vorticity Sheet Equivalence

Hess (Ref 35) has shown that the velocity field due to
a surface distribution of doublets (whose axes are normal to

the surface) 1is equivalent to the combined fields of a
->

distribution of vorticity on the surface where Y < o x Yu

and a line vortex on the bounding curve of the surface whose
strength is equal to the strength of the doublet
distribution o5n the curve. For the two dimensional case
(Figure 3) a constant doublet sheet of strength ¥ from A
to B is equivalent to two point vortices at A and B of
strength u . This means that a velocity field represented
by a distribution of sources and/or doublets can also be
represented by a distribution of sources and/or vortices.
In the case of a constant doublet distribution on a wake,
the equivalent vorticity distribution consists of a pair of
point vortices, one at the start of the wake; and one at
infinity. On the wake u =constant implies Vu = 0 , and
thus y = O on the wake. Therefore Eqs 12 and 15 are

consistent and in fact are equivalent.
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u = constant

k=3
w

Figure 3. Doublet/Vortex Sheet Equivalence

Singularity Behavior

Using Green's theorem it is clear that the problem of
potential flow over a body can be modeled using several
types of singularity distributions, These surface
distributions exhibit certain properties which affect how

34




Vortex Sheet
Source Sheet

&i Figure 4 - Properties of Singularity Sheets

[ A they may be used to model different types of flow.

Transfer of boundary conditions. Consider the

singularity distributions shown in Figure 4 where subscripts
e and i stand <for surface exterior and interior,
respectively. For the source sheet, the potential and the
tangential velocity are continuous across the sheet, while
the normal velocity is discontinuous. For the vortex sheet
the opposite 1s true; that is, the potential and the
tangential velocity are discontinuous across the sheet while
the normal velocity is continuous. The importance of these
properties, as emphasized by Rubbert (Ref 57) is that they
cause certain characteristics to be transferred across the

surface, For example, consider a source sheet on a closed
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surface. If somehow a distribution is specified that gives
a particular solution in the exterior region, the resultant
exterior tangential velocity distribution is carried across
the sheet and becomes the boundary condition specification
on the interior region,. In the case of a vortex
distribution, the normal velocity is transferred across the
sheet so that the interior problem becomes effectively a
Neumann problem. But recall that the condition ensuring a
solution to this problem is that the net normal velocity, or
flow, be zero, which 1is simply a statement that an
incompressible fluid cannot be pumped into a closed region.
One procedure for alleviating the problem of a non zero net
normal flow would be to place a sink inside the surface to
remove any excess fluid,

Singularity Behavior at Corners. The above properties

of singularity sheets apply to surfaces which are smooth to
some order. However, many bodies of interest have slope
discontinuities at one or more points, such as an airfoil
with a sharp trailing edge. Craggs and Mangler (Ref 58)
have studied the behavior of source distributions at corner
points. They find that the source distribution behaves as a
power of distance to the point with the value of the power
depending on whether the flow is symmetric about the corner
and whether the corner is concave or convex to the flow.

For the case shown in Figure 5, which is symmetrical flow
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about a convex corner, the power is positive, SO

that o - 0 as s >0 . Thus in modeling an airfoil with

{

a source distribution this behavior should be considered.

Integral Equations - Existence and Uniqueness

In this section some results from the theory of
integral equations (Refs 59, 60, 61), which will be applied
- in the following sections, will be discussed. Equation 16
is the general form of a Fredholm integral equation of the

second kind where K(x,y) 1is a given kernel function,

b
o(x) = [ K(x,¥)8(r) dy = £(x) (16)
a
' A
B f(x) 1is a given function, X is a parameter, and ¢(x) is
the unknown. Several results can be stated about this
equation.

1. Either Eq 16 has a nontrivial solution, or the

associated homogeneous equation

b
w(x) -1 [ K(x,y)w(y)dy = 0 (17)
a
has a nontrivial solution. The values of X for which Eq

17 has nontrivial solutions are called eigenvalues, and the
solutions w(x) are called eigenfunctions.

2. If A 1is an eigenvalue of Eq 16 then this equation
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is an inconsistent equation (i.e. has no solution) unless

b
fu(x) f(X) dx =0 (18)
a
where
b
u(x) -A/K(y,x)u(y) dy = 0 (19)
a
3. If Eq 18 holds, then there are an infinite number

of solutions to Eq 16 of the form

6(x) = 0 (x)+ Y e W (%) (20)

m m
In

where ¢p is a particular soluti n, the c are arbitrary
constants, and the summation extends over the set of
linearly independent eigenfunctions, ¥ . Another
important property of a Fredholm equation of the second kind
is that it is equivalent to a system of 1linear algebraic
equations.

While Fredholm integral equations of the second kind

have some very nice properties, Fredholm equations of the

first kind, of which Eq 21 is the general form, do not.

b
A fx<x,y>¢<y>dy = £(x) (21)
a

f(x) = known function

It can be shown that equations of this type do not always
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have solutions, and the solutions of solvable cases are
often not unique. This question can be related to the
properties of the Dirichlet and Neumann problems which
required, essentially, that there be no net flux into a
closed region. Equations 16 and 21 will be used, with some
modification, to solve several problems in the succeeding

sections.

Reduction of the Singularity Distribution Formulation to

an Integral Equation

Consider the problem of two dimensional incompressible
flow about a body, B, immersed in a free stream, Vw , as
shown in Figure 6, where P is a field point, q is any point
on B, r(P,q) is the distance between P and q, and Kq is

the outward normal to B at q.

Surface Source Distribution. The velocity potential

function may be represented as a source distribution on B by

¢(P) = %%.jrd(Q)KS(P,q)dl (22)
B

where K (P,q) is the source kernel function in two

dimensions

Ks(P,q) = log(r(P,q))

It can be shown (Ref 14) that if Eq 22 is differentiated and
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Figure 6. Reduction to an Integral Equation.
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if the field point P goes to a surface point p one obtains

- 9(p) 1 3
s—n—p-)e = TL - 37 fO(Q)ﬁ;(KS(P,Q))dl (23)
B

where a/anp means the derivative in the normal direction
to B at p, and the subscript e means that P goes to p in the

region exterior to B. Similarly,

d _ =0 1 3
=y =2 L fo(q) (K (p,q)dl (24)
p 1 B P
If the total velocity in the field
is V= Vm+3 where v = V¢ , then the standard boundary

condition of zero external normal velocity can be written

V, (B) =V, (D) + v (D) = O (25)
ne n ne
or
v, (®) = =V, (p) (26)
e n
but
v () = 3 = HR - L foagd-k (p,a))dL (27)
e P o B p
therefore
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1 }( 3 _ (28)
o(p) - = 0(q) 57—(K (p,q))dl = -2V (p)
B P n
This 1is a Fredholm Equation of the Second Kind for the
source strength o(p) on B. Before the results presented

earlier for this type of equation can ve applied, the kerncl

K(p,q) = % (Ks(p,a))
p

must be considered. A cursory examination indicates
that K(p,q) 1is singular at q=p , but it can be shown
that in the two dimensional case the singularity is
removable if the curve B is sufficiently smooth.

Conditions for Solvability. What constitutes

sufficient smoothness is not completely clear, Tricomi (Ref
59) and Sternberg and Smith (Ref 62) specify that B have
continuous curvature. Mikhlin (Ref 63) and Pogorzelski (Ref
64) require that the surface satisfy the following
conditions (which are called Liapunov conditions):

1. The surface has a definite normal at each point.

2. There exists a number ¢>0 such that a sphere of
radius c¢ centered at a point on the surface cuts a portion

the surface such that every line parallel to the normal at
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the point cuts the portion only once.
3. The angle between the normals to any two points on

the surface satisfies the following:
8] 2 ar®

where 6 is the angle between the normals, r 1is the
distance between the points, and a and ¢ are positive
constants. This question will arise again when these
theories are applied to shapes of actual aerodynamic
interest, the majority of which have at least one point of
slope discontinuity. The question of applicability of the
theories to such surfaces has not been satisfactorily
resolved to the author's knowledge. It might be reasoned
that the actual viscosity in the boundary layer will
effectively round off any corners, and this may be the
answer, Also, although all methods exhibit decreased
accuracy in the trailing edge region, the quality of
solutions over the remainder of the airfoil does not seem to
be adversely affected.

If it is assumed that B has the requisite smoothness,
and noting that A = % is not an eigenvalue of Eq 28, it is
known that a unique solution exists for any given free
stream flow. The problem just posed is equivalent to the
Neumann exterior problem seen earlier and does indeed have a
unique solution. Recalling the discussion of the properties

of source sheets, since the potential is continuous across
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the sheet, a Dirichlet boundary value problem is effectively
imposed on the interior of B.

Surface Vorticity Distribution. Now consider the same

problem assuming a vortex distribution on B. The stream
function for the siﬁgularity distribution is

-1

v(P) = 35 £ v(a) log (r(P,a)) dl (29)

B

where Y(q) is the vortex strength. But the boundary

condition will be applied in a way first suggested by

Martenson (Ref 65). Consider the total stream function of
the flow,
Y=y 4y (30)
Now on a streamline, such as a body surface, y = constant,
or
g% =0 (31)

where t is the surface tangent direction. Equation 31 is
actually a statement of zero external normal velocity. To
see this, consider the following boundary condition:

oY

v o0 W .
Bni an * ani 0 (32)
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which is a statement that the total internal tangential
velocity on B is zero. Now Green's theorem for VY states

that

f (YV2¥+VxeVY) d
S

V¥
f r (33)
B
where S is interior to B. Also,

V%Y = 0 in S

and

TYe VY v?

where V is the total velocity inside B. Thus
Y )
v? =_/” —
ff ds 4 30, dl (34)
S B
Now the boundary condition is
¥ O on B (35)
so that

JSvras = o (36)
S

but this means that V £ 0 inside B. Further, this implies

that ¥ = constant inside B, and thus
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=0 on B (37)

Now %%— is the interior normal velocity on B, and since
i
the tangential derivative (normal velocity) is continuous

across a vortex sheet
oY (38)

This 1is just a statement of zero exterior normal velocity,

as it was desired to show. Now computing explicitly,

oy
= =X L £y 50— (log 1) dl (39)
P B P
and
\ .
3—% =R L y(a) a;f;—p- (log r) dl (40)
i B

2y -8, -y (41)
p e p 1

Now consider the total external tangential velocity given by

Eq 42 which is actually the quantity of interest.
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Using Eqs 32 and 41, this can be written

2y = v(p) (43)
This states the important property that the total external
tangential velocity 1is equal to the 1local vorticity
strength.

Now consider the integral equation results as they

apply to this formulation. Applying Egqs 32 and 40 one

obtains
3 - —ov_
E%)i = _I%Bl - %F .j(Y(Q) 3%— (log r) dl = —=
B P
(44)
Y
Y(p) + % j[ y(a) 3%; (log r) d1 = 2 T

B

This 1is again a Fredholm equation of the second kind, but
now the parameter A= % is in fact an eigenvalue. From
the earlier discussion of integral equations it is known
that when a solution does exist , it is not unique. This
non-uniqueness will be removed by the application of a Kutta

condition. In later parts of this work a vortex

distribution to which is applied the standard zero exterior
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The problem of two dimensional incompressible potential
flow over a body can be formulated, using the concepts
discussed above, 1in terms of a singularity distribution on
the surface of the body. The different singularity types
have different characteristics which determine whether they
will be effective in a particular application. Once the
singularity has been chosen and the problem has been reduced
to the appropriate integral equation, additional numerical
approximations must be introduced 1in order to obtain
solutions for arbitrary geometries, The details of these
approximations form the basis of the panel method approach
to solving this problem.

In the next chapter a new panel method will be
presented. The method is based on the use of circular arc

panels with higher order singularity distributions.
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III. Panel Method Approach

The purpose of this chapter is to formulate a new
method of obtaining an approximate solution to the integral
equations developed in the preceeding chapter using the
panel method approach. This method is based on the concept
of approximating the surface of a two dimensional body by a
series of circular arcs on which higher order source and
vorticity distributions are placed.

Any panel method consists of certain assumptions and
approximations concerning the basic elements of the integral
equation. These elements include the approximate
representation of the surface over which the integral is
taken, the approximate representation of the singularity
distribution which is assumed on the surface, the type of
boundary conditions which are applied, and the procedure by
which the Kutta condition is satisfied.

The next section will discuss different ways of
representing the surface, and will give the rationale for
the choice of the circular arc element, as well as details
of the numerical implementation. This will be followed by a
discussion of the types of singularities available and the
procedure by which the singularity strength is approximated

on a panel. A discussion of the boundary conditions that
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will be applied will follow. This will include the

reduction of the velocity boundary conditions to a matrix

equation, and a discussion of the form of the Kutta
condition which will be used. Finally, the reduction of the
method to a system of linear algebraic equations and the

procedure by which the system is solved will be presented.

Surface Representation

The integral equation to be solved contains an integral
over a surface for which an analytic description will not
usually be available, and even if it were available, the
evaluation in closed form of the resulting integral would
generally be impossible,. Therefore, a suitable
approximation to the surface must be found which will
capture those features of the surface essential for an
accurate solution, while allowing evaluation of the
resulting integrals in a straightforward way. Geometric
features which characterize a curve include position, slope,
curvature, and higher order derivatives; but the gquestion
as to which of these features is essential for an accurate
solution has not been adequately answered in the literature.

The approach which will be used has been considered by
Johnson (Ref 66) in a computer graphics context. This
approach is to approximate a curve in a simple way by using
a set of standard, or primitive, elements and accepting the

level of error which results from the choice of the element.
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As noted by Johnson, this 1is in contrast to a spline
approach in which geometric properties of a curve are
matched by wusing as complex an element as is required to
accomplish the matching.

The simplest way to approximate a plane curve of
moderate curvature is to use a series of straight 1line
segments (Figure 7). Increasing the accuracy of the
approximation can be achieved by increasing the number of
linear elements. The use of higher order curves may reduce
the required number, although at the cost of introducing
additional complexity. In an attempt to balance accuracy
with complexity, several conic arc curves were considered.
In the next section flat, parabolic, circular, and elliptic
arcs will be evaluated as to their use as a standard
approximating element.

Conic Arc Approximation. Consider an arbitrary

curve n = n(f) described in a tangent-normal coordinate
system with the origin at some point on (Figure 8) so
that

n(0) = n'(0) =0

The problem is to approximate this curve in the
region a S £ S b using the following:
1. a straight line segment given by n,(§)
2. a parabolic arc given by np(E)

3. a circular arc given by nc(E)
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Figure 7 - Linear Approximating Elements

"B

Figure 8 - Tangent-Normal Coordinate System
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4, an elliptic arc given by ne(g)

- where these curves are given in the tangent-normal
coordinate system such that
=n' = h=1£ , C, €
np(0) = n', (0) =0 , P
An error function E,(g) can then be defined to describe the
approximation in terms of the error in position, slope, or
higher order derivatives. That is
n _ .n _.n
E, (§8) = n (&) N, (&)
where n 1is the nth derivative of the function. If these
curves are expanded in a power series about p = 0 , and if
the approximating curves are equated term by term with the
A actual curve, the errors of the approximation are given by
Ep(§) = 0(g*)
E = 0(g?
p(él) (£7)
= 3
E,(E) = 0(&%)
E (8) = 0(£%)
Circular Arc Approximation. The circular arc has been
chosen as the standard element for several reasons, From

the apalysis above it can be seen that the accuracy of the
approximation increased as the nature of the element changes

from flat to elliptic, and that the errors resulting from
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3 - Numerical Implementation. The problem is t- >del a
planar curve using a piecewise continuous set of circular

arc elements. It 1is assumed that the curve can not be

described analytically, and will be represented by a set of
coordinate points, input in the case of an airfoil from the
trailing edge in the order indicated in Fig 9. The general

equation of a circle 1is

x2+y?+Dx+Ey+F = 0

where D, E, and F are constants; where the center of the
circle is located at x, =‘%2 , and y, = %E ; and where
the radius of the circle is a=/D?/4 + E°/4-F . Given
three points on the surface (Fig 10) these three constants
(A can be obtained. Let P (x_,y ) for m=1,2,3 be three

points on the surface such that

= _ 2 2 -
me+ymE+F = (xm +ym ) m 1,2,3

This system can be solved to give

D = [X3?4y32-Cx1 24y, D) 1(¥2=y3)=(y1-y3) [xs 24y3 2= (x2 2+y2 2) ]
W

E = (xi=%3) (%3 +y3 2= (%, 2+y22) 1= (X2 =%3 ) [X3 24y 3 2= (%1 2+y, D) ]
W

F = =(x22+y3%)=-x;3D-y4E
where
W= (x1-%x3)(y2-¥3)=-(X2-X3)(y1-¥3)
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and from these the circle radius and the location of the
center can be obtained.

The computer program which implements this procedure
sets an arbitrary lower bound for |W| which effectively
determines how close the three points can be to lying on a
straight line. While a straight line can be interpreted as
a circle of infinite radius, the computer code will not
accept this.

The effects of element curvature can be studied by
passing the approximating circular arc through three
points P, , P; , and P (Figure 11) rather than
through P; , P2 , and P; as described above. The point P

is defined by a parameter 8 given by

where & and kp are defined in Figure 11. As B varies

from O to 1, P moves from Py to Pj3; , and the curvature of

the resulting circular arc changes from O to the curvature

of the circle through the original input points P, , P,
and Pi; . Note that the approximating arc always goes
through the points P, and P, . The result is that the

actual airfoil is modeled as a series of connected circular
arcs. Having developed an approximation to the surface
geometry, the next step in the formulation of a panel method
is the representation of the surface singularity

distribution. This will be discussed in the next section.
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Figure 11 - Curvature Effect on Panel Defining Geometry
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Singularity Representation

It has been shown that source, doublet, or vortex
singularities can be used to model potential flow problems,
and that the doublet and vortex singularities are
equivalent. The source singularity is 1incapable of
generating 1lift on a body and its exclusive use would be
unsuitable for lifting cases. Beyond this, however, there
is little information available to indicate which
singularity is the better one to use fpr particular
applications. In terms of modeling the physical flow it is
felt that the vortex singularity is more directly related to
the actual flow since one is trying to model the viscous
effects of the boundary layer by using the potential vortex
sheet on the surface. The source or doublet singularity is
more difficult to interpret physically, and for this reason
it 1is believed that the vortex singularity provides more
insight into what is actually happening in the flow near the
surface. Since part of the purpose of this effort is to
study the effect of choice of singularity on the solution
the use of both the source and the vortex singularities will
be investigated.

Series Expansion. The singularity strength

distribution will be represented as a series expansion of

the form
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Q-1
O'(e) = Z qk sink(e—el) (47)
k=0

while for the airfoil cases the series used was an expansion

about the panel midpoint e“, so that
Q-1
.k 48
cg(8) = 2{: q; sin (e-eM) (48)
k=0

Here Q 1is the number of terms in the series. In the
applications to follow Q will be varied from 1 to 4 in order
to study its effect on the solution. It should be noted
that Q 1is also the total number of unknowns on a panel so
that the total number of unknowns for a problem which is
modeled by N panels will be Q°N. The two forms for
singularity strength given above are essentially equivalent,
although they exhibit certain differences in numerical
characteristics which will be discussed in later sections

where they are applied.

Continuity Conditions. An important part of this study

will be to consider the effects of singularity strength
continuity on the accuracy of the solution. This can be
done by numerically requiring continuity of the singularity
strength and its derivatives across panel junctures, The
purpose of specifying continuity of derivatives is to obtain

continuity of slope (or higher derivatives) of the function
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TABLE IV

Definition of Continuity Parameter C

Cc Singularity characteristic at panel junctures
0 discontinuous
1 continuous
2 continuous derivative
3 continuous 2nd derivative
with respect to arc length along the airfoil. It will Dbe

convenient to characterize the singularity strength in terms
of the degree of continuity Which is 1imposed. For this
purpose a continuity class parameter, C, can be defined as
in to Table IV,

On a circular arc of radius a the arc length S is given

by s = a8 so that

o 1 ano
n D ag0

@
n
©

Now if ( )j refers to quantities on the jth panel, then
the condition of continuity of the function from panel j to
panel j + 1 (that is a class C = 1 function) can be

expressed using Eq 48 as
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0(6 +6.)=G- (e!v - 4, ) (49)
J Mj J j+1 Mg j+1

Likewise the condition for continuity of derivatives can be

expressed as

n n (8, _ )
1 3 oj(eM+6j) 1 ) cj+1 Jj+l 6j+1
n

a’, aen al Tk
J J

Equating these expressions gives equations which enforce

(50)

continuity of the function across panel junctures through
the derivative. The singularity strengths can be

written using Eq 48 as

Q-1
- .k =

oj(eM.+6j) = :z: q, sin (Sj) Q=1,2,3, or 4

. J k=0 J
and
Q-1
.k
0.,4(8 +6.,.,) = }E: q sin"(S8.,,)
j+1 Mj+1 j+1 ) kj+1 j+1

Substituting these into Eq 49 and 50 gives a matrix equation
which prescribes continuity to class C at panel junctures of

the form

Q-1

D IclQl =0 (1)
k=0

Here the [CE] denote NXN continuity coefficient matrices
and the {Qk} denote NX1 column vectors whose elements are

the unknown q,'s . The derivation of the [Cﬁ} matrices
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procedure for reducing the velocity boundary condition to a
matrix equation will be given, followed by a discussion of
the Kutta condition which will be used.

Velocity Boundary Condition. To illustrate the

procedure of reducing the boundary condition to a matrix
equation, consider the case of a normal velocity boundary
condition applied to a surface on which is placed a source
distribution. From Chapter II (Eq 27) the induced normal

velocity at a point p on the surface is given by

. 3K
_lim 1 j[ s
v,(p) = P>p Br ag(q) _anp dl
B

which becomes

vp(p) = gi%l - %F .j( o(q) 33; (Kg) al
B

Now 1if the surface is modeled with N panels, and if the

source distribution on panel j is

Q-1
oi(@) = D g (@)

k=0 J J
where the fk are known functions and the Qe are
j .
unknown constants, then the normal velocity at

the ith control point is

68




[

N Q-1
_ lim 1 ' 3
Va(Py) = 2 Z p+p, 27 / qkjfkj o (K, Jdl

j=1 k=0 Py 1

anel .
P J

The integral over the surface becomes a sum of integrals
over each panel which can be computed analytically. In

matrix form this can be written
Q-1
(vl = > (R JQy}
k=0

where [Rk] are called aerodynamic influence coefficients

and are given by

L B(KS )
lim ij
R = — £ dl.
kij P+pi 2m panelj Lj anpi J
. . .th
If Ve (pi) is the normal velocity at the i
n

control point due to the free stream, the statement of zero

total normal velocity becomes

Q-1
>R (g} = =V, )
k=0

n

The detailed equations for the [Rk] are given in Appendix
B. The formulation if a vortex singularity is used is the
same, and influence coefficients for this case are also

given 1in Appendix B, As noted earlier the vortex case
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requires an additional
solution.

Kutta Condition.

in a lifting potential

II it was noted that

condition to ensure uniqueness of the

The requirement for a Kutta condition
flow model is well known. In Chapter

such a condition was needed to obtain

a unique solution to the problem of flow over a body using a

surface vorticity distribution. The application of the

Kutta condition is
model because it is
viscous flow and the

determination of the

an important step in a potential flow
essentially the link between the real
potential model that allows an accurate

1lift on a body.

Theoretically the Kutta condition requires a finite

flow velocity at a sharp trailing edge. While there are

many ways to achieve this requirement, three methods,

depicted in Figure 13, have been

specification of net circulation,

used in this study; a

a trailing edge bisector

condition, and a specification of zero vorticity at the

trailing edge. The specification of net circulation will be

used to study the circular cylinder
useful in the study of a general
circulation is not known,

The trailing edge bisector

involves a specification of

problem, but it is not

airfoil since the net

condition (Figure 13b)

zZero velocity at a

point Ax from the airfoil trailing edge, and in a

direction normal to a 1line which bisects the airfoil
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Y(s)

) I'= j{*f(s)ds

a. Specification of Net T

v (ax) =0
n

€ }-—- AX g

b. Trailing Edge Bisector

Yu(s)

YU(TE) a2y (TE) =0

L

v (s)
¢. Specification of Y at Trailing Edge

Figure 13 ~ Kutta Condition Specification
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trailing edge angle. The distance Ax , which must be
specified a priori, should be small, but beyond that it is
arbitrary. While this procedure has given good results in
solving the airfoil problem, the arbitrariness in
choosing Ax 1s undesireable,.

The last method, specification of zero vorticity at the
trailing edge, has been used to obtain the majority of the
airfoil results which will be presented later because it is
felt that it is conceptually the most logical approach. It
is based on the fact that, for a surface distribution of
vorticity with an appropriate boundary condition such that
the internal flow is stagnated, the surface vorticity equals
r the tangential velocity on the surface. Since the
trailing edge should be a stagnation point where the
tangential velocity 1is =zero, a specification of zero
vorticity at the trailing edge, both upper and lower
surface, 1is an equivalent Kutta condition. A problem with
this specification is that two equations are required, one
for the upper surface and one for the 1lower surface, and
thus the complete problem is overspecified by one equation.

One way to circumvent this is to use an error parameter
approach (Refs 26, 31) in which a uniform but unknown error
t in normal velocity is assumed at each control point. The

equation for zero normal velocity becomes
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where Vn is the i row of
i
Q-1
(v} =Y (R 1Qy)
k=0

More generally this can be written as
[MI{TI+{V } = {-V_}

n
where

{T} = {°

and E 1is a diagonal matrix of weighting factors which
selects the control points at which the error will be
applied. Usually the nonzero elements of M would be 1.
Henshaw and Bristow have had success with this approach, but
it 1is felt that the major drawback to it is the high degree
of arbitrariness it introduces into the formulation.

In a second method, used by Woodward (Ref 38), a source
of unknown strength is placed inside the airfoil to provide
the required additional unknown. Recalling the discussion
of potential theory it was found that the problem of a
vortex distribution on a closed body with an external normal
velocity boundary condition produced an ill posed problem
unless the net inflow through the surface was zero,
Theoretically this is the problem under consideration, - but

in the numerical formulation, the net inflow condition
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cannot be satisfied because boundary conditions are applied
only at discrete points. The internal point source can be
thought of as a method of removing any excess fluid that
flows into the body as a result of imperfect satisfaction of
the boundary condition. The procedure is to place a point
source inside the body, and add a term reflecting the effect
of the source to the equation for normal velocity at each
control point. Since the 1location of the source is
arbitrary, this is a parameter whose effect on solution

accuracy must be studied.

Numerical Implementation

The basic elements of a new panel method have been
developed 1in the preceeding sections. They include the
choice of surface and singularity representations, the
selection of velocity and continuity boundary conditions,
and if necessary the choice of a Kutta condition. In this
section these elements will be combined into a system of
linear algebraic equations which will be solved using
standard methods.

Matrix Equation Formulation. The procedure for

obtaining the solution to the airfoil problem using a source
distribution is to model the airfoil with N panels. The
number of terms, Q, in the singularity representation is
then chosen, S0 that the problem has a total

of Q<N unknowns, The desired continuity class, C, of the
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Singularity strength is then chosen. This formulation mealLs
that with Q unknowns per panel and C continuity conditions
per panel, a total of L = Q - C velocity boundary conditions
must be applied on each panel in order to have a
determinate 1linear algebraic system. These control points
will in general be equally spaced on a panel, as shown in
Figure 14.

The full system of normal velocity boundary conditions

and continuity conditions can be written

o
]

Q-1

h =
Z [, 1{Q.} = -V, 1,2,...L
k=0

n

]
o
[un
Q

Q-1

. .
> leplig) = o m
k=0

These can be combined into one Q*N by Q°N system
[A]{X} = {B}

For the vortex singularity case in which an internal point
source is added, and the vorticity is specified as zero at
the +trailing edge, an additional unknown and one equation
must be added so that the full system
is (Q=N+1) by (QeN+1) .

Method of Solution. Al though many algorithms are
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h - Control Point Locations
© L=Q-C=1
gL=Q-cC=2
Circular
Panel

a. 1 and 2 Control Points per Panel

Control Point Locations
© L=Q-~C-= 3

Circular g L=Q-C=4
Panel

b. 3 and 4 Control Points per Panel

Figure 14 - Control Point Spacing
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available for solving systems of 1linear equations, no
special effort was made in this study to evaluate different
methods. A standard routine from the International
Mathematical and Statistical Library (IMSL)(Ref 67) was used
in all cases. This routine performs matrix inversion using
5 Gaussian elimination with equilibration and partial
pivoting. It should be noted that the system developed

above exhibits no special characteristics such as bandedness

or symmetry which would allow the use of solvers designed
for such cases,

In this chapter the general panel method approach to
solving potential flow problems has been outlined and the
details of a new panel method have been presented. The new
method is based on the use of continuous circular arc panels
to model a two dimensional surface., A surface singularity
represented as a higher order sine series expansion is then
distributed on the panels. This distribution is given a
specified degree of continuity, appropriate velocity
boundary conditions are applied, and the problem is reduced
to a system of linear algebraic equations in which the
unknowns are constants in the assumed singularity
distribution.

There are several parameters in this formulation which
affect its results, including type of singularity, number of
terms in the series, the continuity class, number of panels,

curvature of the panels, and control point location on the
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panels. In the next two chapters the method will be applied

n

to the problems of flow over a circular cylinder, and flow

o)
v

over several different airfoils. The effects of the

parameters noted above will be evaluated, and the results

v I. ‘r- a‘-"

will be compared with those of other two dimensional

methods.

Y
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IV. Application to the Circular Cylinder

The purpose of this chapter is to apply the present
method to the problem of flow over a circular cylinder,
which has been chosen as a test case for a number of
reasons. First, the circl> is a simple shape for which the
exact solution in terms of both singularity distribution and
surface velocity is easily computed. Additionally, the
surface 1is free of slope discontinuities which will remove
the ambiguities noted earlier which are associated with a
surface singularity distribution at a corner and with the
application of the Kutta Condition. It is realized, of
course, that the circle would seem to be ideally suited for
a method which uses circular arcs for panels.

An extensive study will also be conducted to determine
the effect of a number of parameters on the accuracy of the
solution. These include the singularity type, the number of
terms in the singularity distribution, the number of panels,
continuity, and control point location. The following
sections will discuss the exact solution with which <che
computed solution will be compared, the panel method
formulation of the problem, and the results of the parameter

sensitivity studies.
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Exact Solution

Consider the classic problem of uniform flow over a
;u circular cylinder as shown in Figure 15, Although this
o problem can be solved in several ways, the exact solution
El will Dbe developed in terms of source and vorticity surface
& singularity distributions. This will provide an
introduction to the use of this method to obtain approximate
solutions to more complicated problems.

Source Distribution. Assume there exists a surface

source distribution, c(6) , on the cylinder shown 1in
Figure 15, and apply a zero normal velocity condition to
this problem. Let P go to p on the surface r=1 to obtain

from Eq 28, the normal velocity component induced by the

[ A
i source sheet as
2m
g(® 1 -
Vr(l,e) = —g—)- -4?-[ 0(00)de, (32)
0
The boundary condition is
vr(1,6)+V°°r = vr(l,e)+cose =0
so that Eq 52 becomes
2w
a(8)+ 3= f 5(80)d8s = -2 cos 8 (53)
0 i
" This 1is a Fredholm Equation of the Second Kind with
parameter )\ = %% . Since A is not an eigenvalue Egq 33 has
¢ 80
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Figure 15 - Flow Over a Circular Cylinder
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a unique nontrivial solution. It can be obtained by

integrating Eq 53 to get

2m 2m 2m 2m
f o(e)de+f %—f g(0¢)db,|:db =f -2 cos 6 dé
0 0 0 0
Letting
2T

- 1
QS -E—T\'—f 0(6,)do,
0

where ¢ is the total source strength
s

Eq 54 becomes

2ﬂQs+QS =0
Therefore
Qs =0
and
o(6) = =2 cos 8

The induced normal and tangential velocities on the

are

vr(l,e) -cosf

and
vt(l,e) = -sinf

and the total tangential surface velocity is

(54)

surface

L |
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<
]
<
+
<
i

-2 sin 6 (56)

The natural result of this formulation is that the total
source strength is zero, as should be expected both in this
exact solution and in the subsequent approximate solutions.
The deviation from zero of the total source strength can be
used as a measure of the accuracy of the approximate
solution.

As was discussed in Chapter II, the flow in the
interior region of a closed body is independent of that in
the exterior region, For the choice of a source
distribution on the cylinder with a zero normal velocity
boundary condition, the flow pattern in the interior of the
cylinder is shown in Figure 16a.

Vorticity Distribution. This problem can also be

solved using a surface vorticity distribution and a =zero
internal tangential velocity boundary condition. In this
case the perturbation tangential velocity on the interior
surface of the cylinder due to a vorticity

distribution, v(6) is

27
v (1,8) = ﬂé,il + i’ﬁ‘f Y(80)d8o (57)
0

Applying the boundary condition

vt + Vt°° = v, - sin 6 = 0O
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Eq 57 becomes

27
y(8)=~- %TT'_[ Y(80)dey = -2 sin 8 (58)
0

Recall that this is a Fredholm Integral Equation of the

Second Kind with parameter X\ = 1 . Since ) is an

2m

eigenvalue, a solution to Eq 58 exists only if

27

f W(80)£(8,)d0, = O (59)
0

when f(60) = -2 sin 6,

and where u(6,) 1is a solution to

27

u(e) 3= [ u(eo)des = 0 (60)
0

Clearly u(8g) = cj (where cj is any constant 1is a
solution to Eq 60, and thus is an eigenfunction of Eq 58.

Given any cj Eq 59 holds; therefore, the general solution

to Eq 58 is
B) = +
Y(8) = v,(8) §cj
where yp(e) is a particular solution and T cj is a

J
sum over all linearly independent eigenfunctions. But since

each cj is a constant only one will be linearly

independent; therefore b cj=D where D is any constant.
J
By inspection, yp(e) = -2 sin 8 , so that
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;; inside the cylinder (see Figure 16b) compared with the non
zero flow produced by the source distribution.

Combined Source/Vorticity Distribution. The preceeding

two approaches can be combined by assuming source and

vorticity distributions of the form

0(8) = -A cos 6 (64c)

Yy(8) = -B sin § + FTn (64Db)

s SR
1

where A and B are constants to be determined. The total

T

external normal velocity is then

S +
LA Va(1,0) = (1- 2By cos 6 (65)
and a zero normal velocity boundary condition requires that
;:"' A +B=2 (66)

,4 The total tangential velocity is then, using Eq 66,

e

-~

L _A+B __ T . _ocinas L

: Vt(l,e) sin © 5— Sin 8 + 3= = -2sinb+ »— (67)
e

The velocity given by Eq 67 is the same for any values of A
and B as long as Eq 66 is satisfied.
For example, choosing A =B =1 1is equivalent to

setting the source strength equal to the normal component
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Panel iethod Solution

Sﬂ ';? The method developed in Chapter III will now be applied
to the circular cylinder problem. The circle will be
divided into N panels of equal arc length with panel number
bi 1 centered on the trailing edge stagnation point, as shown
' in Figure 17. While Eq 48, termed the element centered

formulation, is the preferred singularity distribution for

the case of a general body , when it is used for the case of
a circle with equally spaced panels with control points at
panel centers (the points about which the distribution is
expanded) some elements of the velocity influence
coefficients become zero, producing a singular matrix. For
this reason Eq 47, termed the element non-centered
A formulation, will be used to represent the singularity

distribution for flow over a circle.

An advantage of using this series is that the
continuity matrices become diagonal. A disadvantage is that
the results are not completely symmetric. The degree of
symmetry increases as the overall accuracy of the solution
is increased by varying other parameters. The results do
exhibit a polar symmetry about the origin. That is, the
results on a ray connecting two points on the circle and
passing through the origin are identical. Note that a
solution which assumes symmetry has not been developed so

that the method may be applied to asymmetric airfoils,
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Results

The results of the application of the method to the
circular cylinder problem will be presented in terms of
velocity error plots since the exact velocity on the
cylinder can be computed. First, the effects of the various
parameters will be compared using a series of maximum
absolute velocity error plots. This will be followed by a
consideration of the 1local error distribution on the
surface, and finally a discussion of the sensitivity of the
solutions to control point location will be presented.
Although no special attention was given to the question of
computational efficiency, a limited assessment of the effect
of the higher order method on efficiency will be made. In
general, each solution presented required no more than
several seconds of computer time on a CDC 6600/CYBER 74
computer.

Global Error, Figures 18 to 21 show the effects on

accuracy due to panel size, or number of elements (N),
continuity (C), and number of terms (Q) in the singularity
distributions for various choices of singularity and
boundary condition. Figure 18 also shows lines of constant
computer time which will be discussed later. These charts
show the maximum absolute value error in surface normal or

tangential velocity versus N for various combinations of Q
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and C. The ranges on these parameters are
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L C = Control Points

Per Panel

From the solution obtained for each case, velocities on the
circle were computed at 120 equally spaced points around the
circle, and from these the largest absolute value errors

were determined accordiﬂg to Eq 69.

E,~ = MAX

Q7

[ Vcomp(ei) = Vex(8y)

A%

0

(69)
i
o; =135 1 =1,2,...120

This approach is a simple way of comparing the effect of the
above parameters on the relative accuracy of the computed
solutions for various choices of the parameters, and it
allows the effects of these parameters on the solution to be
studied. The wvalues for maximum error are not to be
interpreted, however, as the largest error anywhere on the
surface for a particular solution. Since the velocities are
singular at panel endpoints the error there can be made
arbitrarily large by computing velocities at points closer
and closer to the panel endpoints (at 1least for the

discontinuous cases). Another fact to note concerning the
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above figures 1is that points are missing for certain
parameter combinations because the influence coefficient
matrices were singular, Examination of the matrices in
question revealed that this phenomena is a numerical result
of the symmetry of the circle problem.

Figures 18 and 19 show the maximum absolute errors in
normal and tangential velocity respectively for a source
distribution on the circle using a normal velocity boundary
condition. Figures 20 and 21 show the same maximum absolute
errors for a vorticity distribution for which the total
circulation was specified as zero. Results for the case of
non zero circulation were nearly identical.

The symmetry of the problem resulted in three
interesting effects. First, the total source strength is
identically zero for all cases as it should be for an exact
solution. Second, total circulation in the vorticity case
can be specified without adding an additional equation to
the system. The reason for this is that the expression for
net circulation is embedded in the left hand side of the
problem, and can be conveniently extracted and fixed.
Although this would not in general be an acceptable method
of specifying c¢irculation, the symmetry of the problem
ensures that this technique will be successful for the
circular cylinder case. Third, while the case of a vortex

only distribution with normal velocity boundary conditions
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difference, and the rate of accuracy improvement both
increase up to the Q=3 cases. However as Q goes from Q=3 to
Q=4 the effects of continuity seem to play a more important
role than 1in the source case. For the Q=2 case the
continuous solution is much better than the discontinuous
solution, 1in contrast to the source case where the two were
very close, with the discontinuous case being slightly
better. Considering the Q=3 cases, it is found that both
the C=0 and C=2 cases are actually better than the Q=4, C=0
case, In fact, if EQC denotes the error for the case Q

and C, the .zlative level of error for the normal velocity

is seen to be

B < E < E

a1 < B43 30 < Eza < By

while that for the tangential velocity is seen to be

E < E

41 < E

43 32 < Ezg < E49

For a given value of Q, continuity is important for the
tangential velocity error, but additional degrees of
continuity beyond C=1 are not required. Also, the effect of
increasing Q from 3 to 4 is not clear in that, contrary to
what might be expected, the benefit of the additional term
seems to depend on the particular continuity requirement

that is imposed.

It has been noted that a discontinuous distribution of

99




e Panel End Point
X Control Point

velocity induced by
vortex discontinuity
T \ normal direction

- . at control point

vortex /

discontinuity

sources gives better results than does a continuous
[ distribution, while the opposite is true for the vortex
- case, A possible explanation for this 1lies in the
characteristics of the singularities themselves coupled with
the normal velocity type boundary condition which was used
in the above cases.

For the case of a vortex distribution, a discoantinuity
in strength at a panel juncture will act like a line vortex,
the effect of which will be felt mainly by control points
near the panel juncture, as opposed to control points which
are far away from it. The velocity induced by this 1line
vortex at these nearby control points will usually have a
significant component normal to the panel because most
panels are not highly curved. This can be seen

qualitatively in the sketch above. This normal component of
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discontinuity

velocity which would not be there if the singularity
distribution were continuous, is very effectively cancelled
by the normal velocity boundary condition which was used,
but the vortex strength solution thus obtained is not what
it would be if the vortex distribution was continuous. Thus
it seems reasonable that the vortex case would be sensitive
to whether or not a continuous distribution was used.

It is also reasonable to expect that the source
distribution might be 1less sensitive to imposition of
continuity for similar reasons. In the source case the
velocity component induced b§ a discontinuity at a panel
juncture at a nearby control point would be small if the

panel was not highly curved (See the sketch above). Thus

this normal component of velocity would not have a large
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effect on the source strength solution obtained by applying
a normal velocity boundary condition.

Hess (Ref 12) has developed a criterion for
mathematical consistency of a panel method. This criterion
is that the singularity distribution should be of an order
one degree lower than the order of the surface element. He
notes, however that others (Ref 25) have violated this rule
and have obtained good results. The present results for the
cylinder given above are also in violation of this rule,
because, although the circular arc is a quadratic element,
accuracy improvements were obtained for the Q=2,3 and 4
cases, It 1is felt that the errors introduced during the
numerical implementation of the present method, or other
methods, probably overshadow the mathematical argument for
consistency.

Figure 22 shows the maximum error in normal velocity
for a source versus a vortex solution for several
combinations of Q and C. The element number ranges from 4
to 12. The vortex results were obtained using a tangential
velocity boundary condition. The maximum error in the
vortex solution 1is seen to be consistently less than that

for the source solution for the same number of elements.

Efficiency

Superimposed on Figure 18 are 1lines of constant

computer time for a CDC 6600/CYBER 74 computer. These times
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are useful only for comparing the effects of the parameters
shown on computational efficiency for the present method.
It can be seen that to obtain a given level of accuracy, for
example an error of 10E-3, one needs roughly 1.5 seconds of
computer time for a 3 term series, roughly 2.5 seconds for a
2 term series, and some much larger amount of time for a 1
term series. This means that, although for a given number
of elements computer time increases with Q, the 1level of
error 1is decreasing at a faster rate than Q is increasing.
Thus, for the present method with the ranges of Q and N
shown, the higher order singularity distribution is more
efficient than a lower order distribution.

Local Error. The previous discussion dealt with a

measure of what might be called global error. Now consider
a local error by looking at the actual error distribution on
the circle surface. Figures 23 through 28 show the normal
and tangential velocity errors on the surface, computed at
120 equally spaced points, as a function of angle measured
counterclockwise from the trailing edge stagnation point.
Results for the zero circulation case are given only for the
upper half circle because of flow symmetry. The errors
have the form

E = Vcomp - Vex

€T 5

0

The error in normal velocity is a measure of the 1leakage

through the surface. Since Vn,, =0 , Vo, equals
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[ . e computed value Vncomp , and it can be shown

:! that 2Vn = ¢ -g where ¢ the computed
{ comp ~ex comp

3 source strength and Oex is the exact source strength.

Thus the error in normal velocity is also a direct measure

. 2

‘! of the error of the computed source distribution. All of
! these results are for source distributions.

= Figures 23a and 23b show the effect of Q on the normal

velocity error distribution for several 8 element cases.
These are all C=0 cases, and this is reflected 1in the
discontinuous nature of the error distributions. Note the
difference 1in scale between the Q=1 case, and the Q=2 and
Q=3 cases. Also note the reduction in magnitude and the
general flattening of the curves on a panel as Q increases,

Qf‘ This 1is a result of the fact that more control points on a
panel provide better control of the normal flow through the
panel,

Figure 24 shows the effect of N on the normal velocity
error distribution for the QC=32 case. Although the overall
level o0f error for either case is small, the effect of
doubling the number of elements is dramatic. Although these
curves seem to exhibit an oscillatory nature, this is to be
expected since the boundary conditions are satisfied only at
discrete points. In between these discrete points the
solution effectively over- and under-shoots the correct

solution. The magnitude of the apparent oscillations

decreases as N and Q increase,
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Figures 25a and 25b show the effect of continuity on
the normal velocity error distribution on a 16 element
circle for the Q=2 and Q=3 cases. Although the continuity
of the singularity distributions is reflected in the
smoothness of the error curves (in these and previous
figures) the level of error does not seem to be
significantly affected by the degree of continuity. This is
consistent with previous results for the maximum absolute
velocity errors.

Figures 26 through 28 present similar figures for the
distribution of tangential velocity error. The general
improvement in accuracy as N and Q increase is apparent, as
is the general flattening of the error distributions as Q
increases.

Parameter Study. An extensive study using a source

distribution with N=16 was made to determine the sensitivity
of the solutién to control point location on a panel. All
the results to this point have been for control points which
were equally spaced on a panel.‘ For cases which require one
control point per panel the location of the control point
was varied between 20% and 80% of a panel's arc length. For
cases which require more than one control point per panel
all but one were equally spaced and fixed on a panel, while
one was allowed to vary between the aforementioned 1limits,.

In one case which required two control points per panel both

116




e T | c

I“‘

e "'.'.'ﬂ'J'-"- CARCaCN

" v Pt it Bkt o et S R Nl
L e o e s A AP A P Rt ren aves suan e men e T—— - .-

TABLE V
Fixed Control Point Location

(fraction of panel arc length)

Control
Point No. 40 41 30 20
1 .25 .33 .33 .50
2 .50 .67 .67
3 .75

were allowed to vary.

Figures 29a and 29b show the effect of control point
location on maximum absolute normal and tangential velocity
error. The format of these figures is the same as 1in
Figures 18 through 21. Table V shows the locations of the
fixed control points for the multiple control point cases.
In general these figures show a relatively small effect of
control point location on the overall level of error in an
absolute sense, with similar results for both normal and
tangential velocity errors. A general observation fhat can
be made is that the C=0 curves are all concave upward, while
the continuous cases are all concave downward, except for

the QC=32 case. This would indicate that for C=0 cases
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118

2 s s -k B S S ot om e A M A Al —a - Lo - - A — . -~ ol




»;‘
| 10 3
3 SOURCE DISTRIBUTION
4 N =16 O=QC=10 x=QC=32
- . O0=QC=20 ¢ =QC=40
W d 4=QC=21 V=QC=41
: -+ =m=3° ﬂ=QC=4.3
F - C O o o o
X E= -
> 103
v =
= -
3 o i .
2 o o
gg 1CFE A R A @ A
- i
D]
2 -
oy
>4
< x
S -
A S 10 5
X X
] * >3
i = =2 =2 =2 2
107 o g g °©
10-6 v ¥ M i M 1 o ] M
Q.0 Q2 4 06 Q8 10

CP LOCATION (FRACTION OF ARC LENGTH)

Figure 29b. Effect of Control Point Location on Maximum
Absolute Velocity Error for Circle, Source
Distribution with Different QC Combinations,
and with N=16, Tangential Velocity Error.

119

A - N - . N - CONISE SRV W W W ISP S )




"

control points nearer the panel center would be more
effective, while the reverse would be true for the C not
equal to zero cases.

Figure 30 shows more detailed comparisons for the N=16,
QC=20 case, Since this case requires two control points per
panel, one was fixed, successively, at 10%, 25%, and 50% of
panel arc length, while the other was varied between 20% and
90% of the panel arc length. When the fixed control points
are at 10% and 25% of the panel arc length, the smallest
errors occur when the free control point is near 80%, and
the minimum for the case of the fixed control point at 50%
is when the free control point is also near 50%. This
indicates that a symmetric placement of control points on a
panel gives the smallest level of maximum error.

Figure 31 shows results for the only case is which more
than one control point was moved. In this case, where
QC=20, the control points were initially placed at 20% and
80% of the panel arc length, and then they were moved closer
together at the same rate. The abscissa, S, represents a
fraction of panel arc length with one control point at S and
the second one at 1-S. These curves have minimums in
roughly the 20% to 30% range.

The results shown in Figures 29a and 29b are absolute
velocity errors. Figures 32a and 32b (1 control point case)
and 32c¢, and 32d (more than 1 control point case) reformat

this data by normalizing each curve by its own maximum value
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TABLE VI
Maximum Absolute Normal and Tangential Velocities
QcC VN MAX VT MAX
10 |280.70955 225.,44110
20 31.58174 21.06721
21 17.45405 10.39468
30 .91676 L44371
32 .63308 .49764
40 .20180 .10712
41 .14625 .08988
43 .24076 .16825

so that the maximum value on each curve is 1. The values
used to normalize each curve are given in Table VI.
Although this presentation accentuates: the effects of
control point location, previous comments remain valid.

In general, the variation in tangential velocity error
due to control point location was under 40%, and was often
under 25%. The method was judged to be not critically
sensitive to control point location since shifting this
location did not make order of magnitude changes in
accuracy. The study does not, however, indicate
overwhelming evidence which would support one control point

location over another as a general rule. Thus the choice of
equally spaced control point locations is a rational and
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acceptable choice, and will be wused in the airfoil
applications which will follow.

Combined Distribution. Results presented up to this

point have been for source distributions or for vortex
distributions. Intuitively one might expect some advantage
to be gained by a combined source-vortex or source-doublet
solution method. That this approach seems fundamentally
sound can be argued as follows: source singularities are
more effective near stagnation points. In the forward
stagnation region the free stream must be countered by a
strong efflux and near the rear stagnation point the flow
must be drawn in by a strong influx. On the other hand,
vorticity or doublet singularities are more effective in
generating and controlling surface tangential velocities,
and thus should dominate on those parts of the body where
tangential velocities are large. This precise behavior is
demonstrated by the source only and vorticity only exact
solutions.

Bristow (Ref 29) has found that a hybrid method based
on Green's third identity and employing higher order curved
panels 1is both accurate and numerically stable. In this

formulation, Green's identity specifies that the source

strength density, o , Dbe equated to the surface normal
perturbation velocity component %% . Then
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A similar hybrid version of the present method was
developed by superimposing the source only and vorticity
only panel methods. This approach is tantamount to
splitting the free stream velocity into two equal parts, one
each for solving source only and vortex only problems. This
approach is identical to the A=B=1 version of the
superimposed exact solution discussed earlier.

Solutions obtained in this way were substantially the
same as the vorticity panel results and offered no apparent
advantage since numerical instabilities were absent in both
methods. Figures 33 and 34 show the effects of N, Q, and C
on maximum absolute velocity errors for a source/vortex
combined distribution. An attempt to deviate from the
Green's identity specification ofoc was made by first
solving for by the source panel method using the full free
stream velocity and then solving for y under the influence
of the source distribution. For both cyclic and acyeclic
problems this led to = constant for Q=1, and numerical
difficulties for Q=2.

Based on these results for the use of circular arc
panels to model flow past a circular cylinder, with and
without circulation, the computational evidence indicated no
advantage of the hybrid method, at least when satisfying

Neumann type boundary conditions. Also, from the standpoint
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of comparing and the physical vorticity distribution, the
hybrid method is inferior to a vorticity only solution.

Summary. Several conclusions can be drawn from this
study of the circular cylinder problem:

1. The accuracies obtainable from source only,
vorticity only, and combined source/vortex methods are
roughly equivalent. The vorticity method appears to be
superior for three reasons: 1its applicability to flows with
lift, its more accurate results for tangential velocity and
thus surface pressure, and its more accurate modeling of
physical vorticity.

2, Dramatic reductions in velocity errors are achieved
by increasing Q, the number of terms in the series
representation of singularity strength, through Q=3. A
linear distribution (Q=2) may, however, represent the best
compromise between simplicity and accuracy.

3. Accuracy improvements were achieved by increasing N
(decreasing panel size), panel Jjunctures, t*the surface
velocity distributions were smooth with continuity and
discontinuous without it.

5. The method is not critically sensitive to control
point 1location provided control points are not located too

near panel edges.
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V. Application to Airfoils

The purpose of this chapter is to apply the method
developed previously to several types of airfoils in order
to assess 1its performance in these cases. The airfoils
which have been studied are a symmetric Joukowski airfoil,
an NACA 0024 airfoil, a thin symmetrical airfoil, and two
types of Karman-Trefftz airfoil. Initiélly a source
distribution was used to coinpute the potential flow over the
Joukowski airfoil to indicate whether or not the kind of
results obtained in Chapter IV for the circle could also be
obtained for an airfoil. Since these preliminary efforts
were promising, a source distribution was then used to
éompute the flow over an NACA 0024 airfoil. This was used
because it is more representative of a real airfoil section
(i.e. it has a non zero trailing edge angle compared to the
Joukowski airfoil's cusped trailing edge), and other
computational and experimental results were available for
comparison. A vortex distribution was then used to compute
the thin symmetrical airfoil.

These studies 1led to the application of the method
using source and vortex distributions to both a symmetric
and a cambered Karman-Trefftz airfoil. The bulk of the

effort was concentrated on these airfoils because they have
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a non zero trailing edge angle, and because exact solutions
are readily available for comparison. The unsuccessful
results using certain parameter combinations in computing
these airfoil cases led to the selection of a Dbaseline
method which was then used in an extensive parameter study
and error analysis. This study was made for both types of
Karman-Trefftz airfoils at various angles of attack. It
included the effects of panel size, number of terms in the
singularity distribution, panel distribution characteris-
tics, and point source location. An analysis of the error
introduced into the solution by the error in surface slope
and position at control points was also accomplished.

In the succeeding sections of this chapter results of
the application of the method to a Joukowski airfoil will be
presented, followed by results for the NACA 0024 airfoil,
and for a thin symmetrical airfoil. Results for Karman-
Trefftz airfoils, including detailed parameter studies, will
then be presented. Finally, conclusions regarding the value

of the method for airfoil applications will be discussed.

Joukowski Airfoil

As an 1initial test of the method when applied to an
airfoil, a 13% thick, symmetric Joukowski airfoil was
modeled using a source distribution. Cases were computed
for several combinations of N and Q, and the effect of panel

curvature was also investigated.
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TABLE VII

Paneling Nomenclature

D = NN.SYY

NN Number of Panels

S Paneling Symmetry Indicator
S=1 - Symmetric Panel Arrangement about X Axis

S=2 - Unsymmetric Panel Arrangement about X Axis

YY Unique Identifier (Number) for Panel Arrangement

. YY=00 - Paneling Generated from Equal Angular
q Increments in Complex Circle Plane

YY=01,02 etc - Different Panelings Generated from
- Unequal Angular Increments in Complex

h (> Circle Plane
p - -

arrangement as paneling P=NN.SYY where this nomenclature is
i- defined in Table VII. For example, paneling P=45.100
represents an airfoil with 45 panels which are symmetrically

arranged about the x axis and which were generated by equal

angle increments in the complex circle plane.

Most of the results will be presented as plots of
E% surface tangential velocity error at control points. This
{; procedure implicitly assumes that the paneling is a good
& model of the actual surface. Referring to Figure 43, the
E? exact and computed tangential velocities are determined at
P‘ the points PS and PM respectively. The point PS is
148
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Figure 43.

Surface Points for Velocity Error Comparison.
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TABLE VIII

Preliminary Results for the Karman-Trefftz Airfoil

Method QC
10 20 21 30 31 32
Source, Vn =0 S S U S U S
Vortex, Vt =0 S S U S U Ux*
Vortex, Vn =0 U U S U S U

S = Successful
U = Unsuccessful

* = Non Oscillatory Solution,
But Incorrect Lift

determined by requiring that it have the same x coordinate
as PM'

Preliminary Results. The method was initially applied

to a 19 panel model of the chosen Karman-Trefftz airfoil.
Both source and vortex singularities were used with the
singularity distributions expanded about the panel center
point, for various combinations of Q and C. Table VIII
indicates which of ti -e initial efforts were successful.
Successful cases are those cases for which at 1least a

reasonable solution was obtained. Unsuccessful cases are

those cases for which the aerodynamic influence matrices
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were either algorithmically singular, or for which the
solution exhibited an oscillatory behavior. The asterisked
case was one for which the solution seemed reasonable,
except that the l1lift was considerably in error. Figures 44
and 45 show typical tangential velocity error results for
successful source and vortex calculations. For the vortex
case the Kutta condition was satisfied by placing an
internal point source at XS = ,5 , and specifying zero
vorticity at the trailing edge.

Several approaches were tried to obtain successful
solutions for all cases. For the vortex cases a number of
alternate Kutta conditions were used. These were a
specification of zero vorticity at the trailing edge with an
internal.point source, a specification of net circulation in
an error parameter approach, and a specification of =zero
velocity normal to a trailing edge bisector at a point
slightly downstream of the trailing edge wusing both an
internal source, and an error parameter approach. The
results of these attempts were essentially identical to
those shown in Table VIII. The error parameter approach is
equivalent to the internal point source approach, based on
results to date. The unsuccessful cases were also attempted
using the non centered form of the series expansion with no

change in the results.

For the socurce case, Fig 46 shows an unsuccessful
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of increasing N is to decrease the magnitude of the point
source strength and thus the velocities induced by the
source are correspondingly reduced. Figure 48 shows the
effect of changing Q for a 45 element case, This effect is
not large, but it is interesting to note that the Q=3 cases
do not exhibit the source induced error apparent in the Q=2
cases, although the magnitude of the source strengths are of
the same order. The Q=3 case, however, has two control
points on a panel, and with this additional control point
the normal flow on the panel is more effectively controlled.

Figure 49 shows the effect of additional panels (and
control points) near the source location. The airfoil used
in this figure is the 65 element airfoil of Figure 47, with
the addition of 10 panels on each of the upper and lower
surfaces between 40% and 60% chord for a total paneling of
85 elements.' The point source location remained
at XS=°5 . The result is that the additional control
points in the vicinity of the source control the source
strength quite well.

Effect of Point Source Location. A study was conducted

to determine more precisely the effect of the point source
location on the solution. Figures 50a and 50b show the
tangential velocity error for a 435 element airfoil for the

Q=2 and 3 cases at a = ,0 where the internal point was

placed at one of four locations, XS . There are two
interesting points to note in these figures. The first is
160
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that the effect of changing from Q=2 to Q=3 removes the
source induced error for reasons discussed above. The
second is that the source induced error is indeed a very
local effect. Whether the source 1is at XS=.01, 1,
or .5 , the solution at the trailing edge remains
unaffected, and when the source 1is at XS = .9 , the
solution over the leading 80% of the airfoil is wunchanged.

The effects are local because the source strengths are

small, and their effect on velocity falls off as the inverse

square of the distance from the

source. It shou.d be

mentioned that another way of diffusing the effect of the

point source would be to use a distributed source on a 1line

inside the airfoil.
If the accuracy of the solution over the whole airfoil

is considered, these results indicate that the best location

for the point source is very near the leading edge. For

this case the solution is excellent over 99% ot the airfoil,

while the source induced error at the nose is masked

somewhat by the, in general, larger error that occurs in

this region. These errors are partly due to the fact that a

panel method will have difficulty accounting for the rapid

changes that

occur in velocity as one moves away from the

stagnation point. On physical grounds it might also be

argued that for an airfoil with a blunt nose, a point source

near the nose would be able to more effectively control the
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oncoming free stream than would the surface vorticity in the

nose region.

Effect of Panel Geometry Characteristics. A study was

also conducted to determine the effects of panel geometric
characteristics on the solution. A number of these
geometric parameters are involved in the present method,
including the angle subtended by each panel, the arc length
of each panel, and the curvature of each panel. One would
intuitively expect these geometric parameters to vary in a
smooth manner around the airfoil, making a reasonable
approximation to the actual airfoil characteristics. The
panel approximation 1is of course, only a piecewise
continuous representation of the surface, and will exhibit
discontinuities of curvature. The curvature of a panel in a
flat panel method is constant and equal to zero over a
panel, while in the present method the curvature is constant
but not zero over a panel, with variations from panel to
panel. One would also expect the panel arc length to vary
somewhat smoothly around the airfoil. One would not expect
good results with a very small panel between two large
panels since the small panel's control point would be
overpowered by the nearby larger panels. Several
investigators (Henshaw, Ref 25, Hess, Ref 12) have suggested
as a rule of thumb that the ratio of arc lengths of adjacent

panels be less than 1.5, but this is merely a suggestion
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which 1is probably somewhat dependent on the method being
used.

Figures 5la - 31lc show paneling characteristics for
five different panel arrangements for the Karman-Trefftz
airfoil being considered. The angle subtended by each
panel, the panel radius, and a normalized panel arc length
are plotted against panel number where panel one is the
first panel at the trailing edge. Since the airfoil and all
these panelings are symmetric only upper surface quantities
have been plotted. The panel models compared to the actual
surface have been plotted with an expanded vertical scale in
Figures 52a-52d. As was the case in Figure 42 almost no
difference between the two can be seen, except in the
paneling = 45.101 case which will be discussed below. The
tangential velocity errors for these panelings are shown in
Figures 53a and 53b for QC=21 and QC=31 respectively, with
a = 0 radians. Similar results for d = .1 radians are
shown in Figures 53c¢c-53f. In these cases results are shown
for both upper and lower surfaces since they are not the
same at non-zero angle of attack.

The first panel arrangement which was computed was the
p=45.100 scheme, and while the geometric characteristics as
well as the velocity error results appear reasonable, it was
felt that some improvements could be obtained, particularly
in the leading edge region. -This paneling was then modified

slightly by shifting panels toward the nose and the tail to
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produce the P = 45,101 paneling, but in so doing, a rather
large Jjump in all of the panel geometric characteristics is
introduced near the 30% chord point at panel No.14. The
effect on the surface modeling of this modification can be
seen 1in Figure 52a. Figures 53a-53f show the dramatic
effect of this discontinuity on the velocity error, but note
that the effect is quite localized near the discontinuity.

The P=45.101 paneling was then modified by slightly
moving slightly one of the panel defining points for the
_panel on which the curvature jump takes place. The
resultant P=45.103 paneling is only slightly different than
the P=45.101 case, yet the curvature jump is gone and the
resultant error plots are much improved as shown in Figures
53a-53f.

The original P=45.100 paneling was modified in a
different way by removing panels at the nose and tail while
requiring that the 1.5 rule hold in these regions, and
adding panels over the mid section of the airfoil. This
arrangement is the P = 45,102 paneling and the velocity
error plots for this case indeed show a reduction in error
at the leading and trailing edges compared to the P = 45,100
case, 1indicating the wvalidity of the 1.5 rule. This
paneling was then further modified by adding par«ls at the
leading and trailing edge to obtain the P=49,101 paneling.

The errors for this case are similar to those for the
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«
’ P=45,102 arrangement with perhaps slight improvement near
:! = the leading edge which may be attributable to the slightly
increased panel density.
These studies have shown that the present method is
I! rather insensitive to changes 1in geometric paneling

characteristics provided that these characteristics conform
generally to what might be expected of a good model of the
airfoil; that is, the characteristics vary smoothly over the
airfoil. The method is sensitive to these characteristics
only when large changes occur over a small part of the
airfoil, but in these cases the sensitivity effects are
ccalized. The effects are localized for the same reason

that the effect of the point source was a local one, 1i.e.

’» the effect of a panel decreases with distance from the
i. panel. The reason that the method is sensitive, locally, to
geometric characteristics is that the method is capable of

!l modeling geometry very well, particularly as N is increased.

This capability for faithful geometric representation is one

of the attractive features of panel methods in general.

Effect of Panel Curvature A study was also conducted

Laaes JEN o Mot SR ar3 A o]

to determine the effects of panel curvature on the computed
solution. The parameter controls the curvature of each

panel by moving the third point, through which the circle is

surface toward the straight line connecting the panel end

!
:- drawn, in from the originally specified point on the airfoil
¢ points. Thus B = 0 would be, in the limit, a flat panel,
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and B =1 1is the normal case where the circle is drawn
through the three input points on the airfoil surface.
Figures 54a-54f show results for the P=45.102 airfoil

with a point source at X_ = ,01 for a range of g's from

S
1 to 0.2, and for two angles of attack. Note that the
errors 1increase as the panel becomes flatter, Also

note that as the panel becomes flatter the error is larger
for the three term series than for the two term series in
all cases. It seems that as the panel becomes flatter, or
approaches a lower order representation of the surface, a
lower order representation of the singularity (i.e. a 2 term
rather than a 3 term series) is sufficient to produce a
certain level of error, Of course these errors are larger
than are obtained by using the full circular arc panel. The
reason that better results are obtained wusing the more
highly curved panels is that they provide a better
representation of the surface in terms of location of the
singularity, and location of the control point.

Effect of Angle of Attack. The results presented to

this point have included angles of attack a=,0 , and .1
radians, and have exhibited no strong sensitivity to the
angle of attack. To study more carefully the effects of
angle of attack, an N=19 element symmetrically paneled
airfoil was computed at various a's between O,, and .55

radians for both the two and the three term singularity
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series. The results of these calculations are presented in
Figure 55 which shows excellent agreement for the 1lift
coefficient over the entire angle of attack range for both
two and three term cases. Figure 56 shows the error in
1lift coefficient; that is CLer = CLex - CLcomp . Note
that both the two and three term curves are linear with a ,
and that the error is quite small. Also, the error for the
three term case is less than for the two term case, and the
slope of the three term curve is less than that for the two

term case so that the difference increases with o . A

consequence of the linearity of these curves is that the fig

= CL
relative error, defined as CLrel— 1- “comp , 1is
. Lex
essentially a constant, For Q=2, che1=°00697 , and

for Q=3, Cp.,= .00578 .

Effect of Control Point Location. An important

question which arises in the discussion of any panel method
is the sensitivity of the solution to control point
placement. In the present method, the control point
location is assummed to be on the circular arc which
represents the surface, and similarly, the normal to the
surface 1is represented by the normal to the circular arc.
Thus there is an error in both the control point location,
and the surface slope. Since surface location and slope can
be computed exactly for a Karman-Trefftz airfoil, a study
was done to determine the sensitivity of the current method

to these errors. Since these two parameters are independent
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four cases can be considered:

1. the location and slope are computed, as in the
basic method, using circular arc panels.

2. the location is exact but the slope 1is computed
from the circular arc.

3. the 1location 1is computed from the <circular arc
panels but the slope 1is exact, and

4, both the location and the slope are exact.
For the two term model, in which there is one control point
per panel, the third panel defining point is used as the
control point in cases two and four. For the three term
model, where two control points are required on a panel
instead of one, this approach cannot be used; so for the
three term model only cases one and three have been studied.

Figures b57a-e and 58a-e show tangential velocity error
results for the four cases as a function of several
parameters. Figures 57a and 57b are results for a nine
element airfoil at o« = 0 for QC=21 and QC=31 . While
these figures do not give a clear 1iadication of which
combinations of slope and control point parameters are
superior, they do show that contrary to what might be
expected, the use of the exact slope and coantrol point
location 1is clearly not the best. Results for a = ,1
radians shown in Figures 57c-e are similar. However, results

for a ten element airfoil, given in Figs 58a-e, show that
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Figure 57b, Effect of Ccntrecl Point Location and Slope on

Tangential Velocity Error for a Karman-Trefftz
Airfoil, N=9, QC=31, x=.0 radians.
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Figure 57d, Effect of Control Point Location and Slope on
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Airfoil, N=10, QC=31, a=.1 radians.

203




.....................

the error using the basic method is generally small and

relatively constant over the center part of the airfoil,
while the other cases give somewhat larger errors which also
tend to vary more dramatically. As before, the use of the
exact slope and control point location clearly does not lead
to the best solution.

It is instructive to look at the slope percentage error
that results from using a computed control point. Figure 59
shows the slope error for a 19 element and a 45 element
airfoil with QC=21 and QC=31, using a computed control point
(i.e. the basic method). Note that the slope error is
constant and small over most of the airfoil for both element
numbers and for both values of Q. It is also clear that
inéreased panel density in the nose region significantly
reduces the slope error there, Since the errors on one or
two panels near the leading edge are relatively 1large
compared to the rest of the airfoil, one might suppose that
these errors account in part for the relatively larger
errors in tangential velocity that have been noted in the
nose region. This could not be the only cause of these
errors, though, since larger errors are encountered in the
trailing edge region as well, yet the slope errors in this
region are very small.

This study has shown that, contrary to what might be
expected, use of exact control point location and slope

information in the present method does not lead to improved
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accuracy in the solution. Since the representation of the

surface geometry in terms of slope error was seen to be very

good, other sources of error in the method probably drive
the error in the solution. The most likely sources of error
are the discrete application of the boundary conditions, and
the series approximation to the singularity distribution.
Thus the additional input data which would be required to
use exact slope and control point location is not justified,
and the use of computed slope and location information is
completely adequate to represent the surface geometry, at
least as far as the present method is concerned.

Effect of Camber. The airfoils which have been studied

up to this point have been symmetric. Now, the present
t" method will be applied to a slightly cambered Karman-Trefftz
airfoil which has a camber parameter of 3m/4 , a trailing
edge angle of 0.2356 radians, and a zero lift angle of
attack of -,0275 radians, The airfoil was paneled with 45
elements equally spaced in the circle plane, which produces
a slightly asymmetric paneling (designated as P=45.201) in
the airfoil plane. The basic method was used
with XS=.01 and B=1 . Results for the QC=21 case at
angles of attack 0.0 and 0.1 radians are shown in Figures
60a and 60b. Both upper and lower surfaces are plotted
since the paneling is not symmetric. Figures 60c and 60d

show similar results for the QC=31 cases. These curves

exhibit characteristics similar to those noted earlier for
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the symmetric airfoil. These velocity errors near the nose
do appear to be larger, but this may be due in part to the
fact that the point source was placed very near the nose,
and also to the fact that the stagnation point at the nose
is not near the control point of the nose panel. For the
symmetric airfoil cases with a similar paneling the nose
panel control point was located at the stagnation point, so

that the correct solution was obtained at that point.

Summarz

In this chapter the method of circular arc panels was
applied to several different types of airfoils, and the
characteristics  which define the method were varied
systeumatically to determine their effect on solution
accuracy. The method was first applied to a Joukowski
airfoil, an NACA 0024 airfoil,a thin symmetric airfoil, and
a Karman-Trefftz airfoil using different combinations of
singularity type and varying the number of terms in the
series and the degree of continuity imposed. These
preliminary studies showed that accurate results were
consistently obtained for different types of airfoils and
for 1lifting and non-lifting cases by using the following
approach (which can be compared with the characteristics
shown in Table I): a 2 or 3 term (linear or quadratic)
vortex distribution is p laced on each panel, and continuity

of the distribution is enforced at panel junctures. The
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panels are piecewise continuous circular arc elements
generated from the surface geometry with no series expansion
approximations. The boundary condition imposed at control
point is zero external normal velocity. The Kutta condition
is met by specifying zero vorticity at the trailing edge on
both upper and lower surfaces, and an internal point source
is added to close the formulation. All integrations are
performed analytically for maximum computational efficiency.
This basic method was then exercised on both symmetric and
cambered Karman-Trefftz airfoils at different angles fo
attack to determine the effects of N, Q, panel geometry,
point source location, panel curvature, and controfl point
characteristics on the accuracy of the method. The
following conclusions can be drawn:

1, Increasing N and/or Q produces more accurate
results.

2. The method is somewhat sensitive to paneling
geometric characteristics (panel subtended angle, panel
radius, and panel arc length), but the effect is local.

3. The effect of the internal point source can be
relatively 1large, but it 1is very localized and can be
controlled by using additional control points in the
vicinity of the source.

4, The accuracy of the solution generally increases
as the curvature of the panels is varied from nearly flat to

the circular arc model.
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5. The effect of exact representation of control
point 1location and slope does not lead to more accurate
solutions compared to results based on the computation of
the location and slope from the circular arc model.

6. The method produces good results over a range of
angles of attack, although the accuracy decreases 1linearly
as angle of attack increases.

The next chapter will summarize the development of the
present method, draw conclusions concerning the application
of the method to the circular cylinder and to airfoils, and

present suggestions for future work in this area.
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VI. Conclusions and Recommendations

Conclusions

The purpose of this effort was to develop a better
understanding of the effects of the several characteristics
involved in a panel method solution, and to provide guidance
and understanding for the further development of two and
three dimensional panel methods. To reach this goal, a new
panel method, based on the fundamental concepts of potential
theory and on a simple approach to curve approximation, has
been developed. This method used a new approximating
element, the circular arc; and a new singularity
representation, the sine series,

The method was initially applied to the problem of flow
over a circular cylinder and the effects of varying several
parameters were studied. This effort showed that the
current method was capable of accurate results (which were
noted earlier), and it allowed an assessment of the effects
of the many characteristics which impact a solution. This
assessment was used to develop the method further.

Based on these studies of the circular cylinder the
method was applied to a Joukowski airfoil, an NACA 0024
airfoil, a thin symmetric airfoil and a Karman-Trefftz

airfoil. Initial studies were performed to assess the
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applicability of the method to airfoil shapes as a function
of singularity type, number of terms in the series (Q),
degree of continuity (C), type of boundary condition, and
Kutta conditicn formulation, Source and vortex
distributions were used, while values of Q varied from 1 to
3 and values of C varied from 0 to 2. For the vortex cases
3 types of Kutta condition were investigated: an error
parameter approach with a trailing edge bisector condition,
an internal point source with a trailing edge bisector
condition, and an internal point source with a specification
of zerc vorticity at the trailing edge. These studies
indicated that the method was not sensitive to the type of
Kutta condition used. Also not all combinations of Q and C
yielded acceptable solutions, depending on the type of
singularity which was used.

As a result of these preliminary studies a basic method
was chosen for further investigation. This method used a
continuous 2 or 3 term vorticity distribution with a normal
velocity boundary condition, and an intermal point source
with zero vorticity at the trailing edge to satisfy the
Kutta condition. This basic method was then applied to a
symmetric Karman-Trefftz airfoil and detailed studies were
conducted to determine the effects of number of panels (N),
number of terms, point source Jocation, geometric paneling

characteristics, panel curvature, angle of attack, control
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point location and slope, and airfoil camber. Conclusions
which can be drawn from this study are:

1. The method produces very accurate solutions over
the major part of the airfoil, with the largest errors
occcuring at the 1leading and trailing edges (i.e. the
stagnation point) . These errors are, however, always small
compared to the free stream and are small compared to the
exact solution except at points next to the stagnation
points.

2, Significant error reduction occurs as N is
increased, and reasonable, though not as large a reduction,
occurs as Q is increased from 2 to 3.

3. The effect of point source location is large but
is very 1local. It was found that these source induced
errors can be effectively controlled by either a 3 term
series, or by placing additional control points near the
source.

4. The method 1is generally insensitive to minor
variations in paneling as long as the geometric parameters
governing the paneling: That is, panel curvature and panel
subtended angle, vary in a smooth manner around the airfoil.
Additionally, the requirement that adjacent panels maintain
a 3:2 or less ratio in arc length was found to be effective
in reducing errors, particularly at the trailing edge.

5. The effect of panel curvature is that accuracy

increases as the curvature increases from that of a nearly
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flat panel to that of a circular arc panel with three points
on the circular arc coincident with the airfoil surface for
both the 2 and 3 term series expansions.

6. The accuracy of the solution decreases slightly as
the angle of attack increases,

7. It was found that improved accuracy is not
generally obtained when either exact control point location
or slope information is used as opposed to when these
quantities are computed from the circular arc panel. Since
one might expect that the additional exact information would
improve the solution, the fact that it does not indicates
that other errors inherent in the formulation, such as the
singularity formulation and the discretization process
itself, may be the primary causes of error.

8. The method provides accurate results for a non-
symmetric airfoil, although the accuracy is not quite as

good as for the symmetric case..

Recommendations

Several areas for further work have become apparent
during the course of this research. These include improving
the method as a two dimensional tool and extending the
method to the three dimensional case. In terms of
improvement of the two dimensional method, further study to

improve the solution at the leading and trailing edges could
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be undertaken. A possible approach to doing this would be

to modify the singularity distribution on one or several
panels at the leading or trailing edges. The rationale for
this approach is that the gradients in singularity strength
are largest in these regions, and it is possible that the
same series representation of the singularity can not
adequately model these gradients. Fcr example, one might
use, at the trailing edges, a singularity strength which is
proportional to the square root of the arc length measured
from the trailing edge because this singularity will go to
zero at the trailing edge more quickly than will a 1linear
function. A disadvantage, however, to using more
complicated representations of the singularity is that
numerical integration might be required to obtain the
influence coefficients for the panels involved.

Another approach to quickly improving solution accuracy
is based on the observation that the tangential velocity
errors near the leading and trailing edges do not vary
smoothly. This is true over a larger portion of the airfoil
for the 3 term series expansion cases as well, As a way of
smoothing these curves and reducing the overall error in the
solution a new veiocity curve could be fitted to the
calculated results using a least squares procedure, or some
type of averaging procedure. A systematic study of a
particular algorithm for doing this would be required to

establish the validity of this appronack for the case of a
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general airfoil.

A third area for additional study is related to the
initial results presented in Chapter V. Further
investigation of the failure of certain parameter
combinations to yield solutions 1is required to fully
understand the proper way of to numerically solve the
integral equations of potential flow using the panel method
approach. This should include further study of the
application of the Kutta condition, particularly in the case
in which a solution was obtained using the internal velocity
boundary condition.

The method could also be extended to three dimensions.
For example, consider thg case of a finite wing. Paneling
in the spanwise direction would have to be developed. A
scheme using flat panels spanwise, or one using curved
panels whose radii varied in the spanwise direction could be
investigated. Another alternative would be a complete
numerical integration in the spanwise direction coupled with
analytic intergration chordwise. If circular arc panels
were developed spanwise, the resulting integrations to
obtain the influence coefficients would probably have to be
performed numerically since the resulting equations are
elliptic. Another approach would be to use circular arc
panels only at the leading edge or at the wing tips since

these are the regions where wing surfaces typically exhibit
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the largest curvatures.
An additional extension of the two dimensional method

which would have application in three dimensional cases as

well would be to develop a procedure for computing forces
and moments on the airfoil or wing using computed velocities
and the surface paneling. This is an area where the details
of the surface model could play an important role, and an
assessment of the effect of the circular arc panel model on

these quantities would be a worthwhile result.

220




i Y

Y
l

gy
’

) SR

—

A

10.

Bibliography

Shapiro, A.H. The Dynamics and Thermodynamics of
Compressible Fluid Flow, Vol I, John Wiley and Sons,
New York, 1933.

Magnus, A.J., Epton, M.A., et al. "PAN AIR - A
Computer Program for the Prediction of Subsonic or
Supersonic Flow about Arbitrary Configurations, Volume
1-PAN AIR Theory", May, 1980.

Theodorsen, Theodore. Theory of Wing Sections of
Arbitrary Shape, NACA Report No. 411, 1931.

Catherall, D., Foster D.N., and Sells, C.C.L. Two
D1mens1ona1 Incompressible Flow Past a Llftlng Airfoil,
RAE-TR-69118, June 1969.

Murman, E.M. and Cole, J.D. "Calculation of Plane,
Steady Transonic Flows', AIAA Journal, Vol.9, Jan 1971,

Bailey, F.R. and Ballhaus, W.F. "Compariscns of
Computed and Experimental Pressures for Transonis rfiows
About Isolated Wings and Wing-Fuselage Combination",
Aerodynamic Analysis Requiring Advanced Computers Part
I1I., NASA SP-347, 1975.

Caughey, D.A. and Jameson, A. "Numerical Calculation of
Transonic Potential Flow About Wing-Body Combinations",
AIAA Journal, Vol.17, No.2, Feb.,1979.

Boppe, Cc.w. "Computational Transonic Flow About
Realistic Aircraft Configurations'", AIAA paper No.78-~
104, 1978.

Shen, S.F. "An Aerodynamicist Looks at the Finite

Element Method", Finite Elements in Fluids Vol.2, John
Wiley, N.Y., 1975,

Habashi, W.G. "A Study of the Finite Element Method for
Aerodynamic Applications", PhD thesis Cornell
University, 1975.

221




~— 11. Marsh, J.E. "Prediction of Aerodynamic Forces on a
Circular Cylinder and a Thin Airfoil 1in a Transonic
Airstream by the Finite Element Method", Ph.D. thesis
Air Force Institute of Technology, 1979.

12, Hess, J.L. '"Review of Integral Equation Techniques for
Solving Potential-Flow Problems with Emphasis on the
Surface Source Method," Computer Methods in Applied
Mechanics and Engineering Vol.o, 1975.

13. Lamb, H., Hydrodynamics, Dover Pub, N.Y., 1945.

14. Kellog, O0.D. Foundations of Potential Theory, Dover
Pub., N.Y., 1953.

15. Hess, J.L. "Higher Order Numerical Solution of the
Integral Equation for the Two-Dimensional Neumann

Problem", Computer Methous in Applied Mechanics and
Engineering VOE.E, 1973, p.1-15.

16, ====- . "The Use of Higher-Order Surface Singularity
Distributions to Obtain Improved Potential Flow
Solutions for Two Dimensional Lifting Airfoils",

Computer Methods in Applied Mechanics and Engineering
/* Vol.5, i§’75, p.11-35.

17. -==—- . Improved Solution for Potential Flow About
Arbitrary Axisymmetric Bodies by the Use of a Higher-

Order Surface Source Method", Computer Methods in
%Bglied Mechanics and Engineering, Vol.5, 1975, p.297-
08

18, —==-- and Smith, A.M.0. "Calculation of Potential Flow
About Arbitrary Bodies", Progress in Aeronautical
Sciences Vol.8, Pergammon Press, N.Y., 66,

19. Henshaw, D.H. Two Dimensional Airfoil Analysis Using a

Refined Finite Element Technique, LTR-LA-124, National
Research Council Canada, May 1973.

20, ==w== . Application of Higher Order Surface Elements to
the Solution of the Laplace Equation for the Example of
a Conventional Airfoil, LTR-LA-127, National Research
Council Canada, June 1973.

21, ====-= . Application of Higher Order Surface Elements to
the Solution of the Laplace Equation for the Example of
a__ Karman-Trefftz  Venticular  Alirfoil, LTE-EK-iﬁQ,

National Research Council Canada, July 1973.

) - PP w—y - & . VN W shembtiteiinistietibsininstutintintunteniel



ryryy

P

v

23.

24.

25.

26.

27.

28.

29.

30.

31.

----- . A Testing of a Technique of Higher Order
Boundary Elements for the Case of Two-Dimensional,
Incompressible Potential Flow About a Thin Highly
Cambered Body. LTR-LA-136, National Research Council
Canada, Jan. 1974.

Henshaw, D.H. Consistent Formulations of the Integral
Equations for the Two-Dimensional Neumann Problem, LIR-
LA-141, National Research Council Canada, March 1974.

------ A Singularly Consistent Higher Order Numerical
Solution of the Laplace Equation for an 8:1 Ellipse,
LTR-LA-~143, National Research Council Canada, December
1973.

----- . Singularly Consistent, Higher Order, Vorticity
Integral Equations for the Two Dimensional Neuman
Problem, LTR-LA-146, National Research Council Canada,
Jan., 1974.

----- . Singularly Consistent Higher Order Integral
Equations  for the Numerical Two-Dimensional Neuman
Problem, LTR-LA-147, National Research Council Canada,
Jan. 1974.

————— . Unified Boundary Conditions for the Numerical
Solution of the Integral Equations for the Neumann
Problem, LTR-LA-149, National Research Council Canada,
Feb. 1974.

----- . Singularly Consistent Higher-Order Integral
Equations for the Two-Dimensional Neumann Problem, LTR-
LA-150, National Research Council Canada, Feb. 1974,

Bristow, D.R. "A New Surface Singularity Method for
Multi-Element Airfoil Analysis and Design'', AIAA paper
76-20, Jan. 1976.

----- . Incompressible Potential Flow: Numerical
Characteristics of Three Classical Surface Singularity
Representations, Report No. MDCA4407, McDonnell Douglas
Corp., Sept 1976.

----- . Recent Improvements in Surface Singularity
Method for the Flow Field Analysis  About  Two
Dimensional Airfoils, Report No. MCAIR 77-004, McDonnell
Douglas Corp., June 1977.

223




- w T W T m T 4T w

- 32. Raj, P. "A Method of Computing the Potential Flow on
Thick Wing Tips'", Ph.D. thesis Georgia Institute of
Technology, October 1976,

33. Keller, C.L. Integral Equation Methods for Two
Dimensional Incompressible Flows For Multi-element
Airfoils, AFFDL-TR-77-27, WPAFB, Ohio, April 1977.

34. Hess, J.L. "The Problem of Three-Dimensional Lifting
) Potential Flow and its Solution by Means of Surface
- Singularity Distributions", Computer Methods in Applied
- Mechanics and Engineering, Vol.4, 1975, 283-319.

;‘ 35, —=—=- . Calculation of Arbitrary Potential Flow About
& Arbitrary Three-Dimensional Lifting Bodies, Report No.
Lf MDC J5679-01, McDonnell Douglas Corp. Oct. 1972 (AD
= 755480).

36, ====- . Status of a Higher-Order Panel Method for
Nonlifting_iﬁree-ﬁimen51onal Potential Flow, Report No.
NADC-76118-30, Naval Air Development Center, Warminster,
Pa., Aug. 1977.

37. Woodward, F.A, "Analysis and Design of Wing-Body
. Combinations at Subsonic and Supersonic Speeds', Journal
N A of Aircraft Vol.5 No.6, Nov.-Dec. 1968. .

38, —===- . An Improved Method for the Aerodynamic Analysis
of Wing-Body-Tail Configurations in Subsonic  and
Supersonic Flow Part I, NASA CR- , May 3.

39, ~—===- . "The Supersonic Triplet - A New Aerodynamic
Panel Singularity with Directional Properties'", AIAA
paper 79-0273, Jan. 1979.

40, Roberts, A. The Neumann Wing, Report MA 8, British
Aircraft Corp., Aug. 1967,

41, —-=—-~- and Rundle, K. Computation of Incompressible Flow
about Bodies and Thick Wings Using the Spline Mode
System, Report Aero MA 19, British Aircraft Corp, April
1972.

42, —w—=- . The Computation of First Order Compressible Flow
About Wing-ﬁo@gﬁ Eonfigurations, Report Aero MA 20

British Aircraft Corp., Feb. 1973. ’

224




43.

44.

45.

46.

47.

48.

49,

50.

51.

52.

53.

Morino, L. A Gerneral Theory of Unsteady Compressible
Potential Aerodynamics, NASA CR-2464, Dec. 1974.

----- and Kuo, C.C. "Subsonic Potential Aerodynamics
for Complex Configurations: A General Theory', AIAA

Journal Vol.12, No.2, Feb. 1974,

Morino, L. Chen, L.T., and Sucin, E.O. '"Steady and
Oscillatory Subsonic and Supersonic Aerodynamics around
Complex Configurations', AIAA Journal, Vol.13, No.3,
March 1975.

Rubbert, P.E., Saaris, G.R., et al, A General Method for
Determining the Aerodynamic Characteristics of Fan in
Wing Configurations, USAA VLABS Technical Report 67-614,
U.S. Army Aviation Material Labs, Fort Eustis, Va., Dec.
1967.

Rubbert, P.E. and Saaris, G.R. '"Review and Evaluation
of a Three-Dimensional Lifting Potential Flow Analysis
Method for Arbitrary Configurations', AIAA paper 72-188,
Jan. 1972.

Johnson, F.T. and Rubbert, P.E. '"Advanced Panel-Type
Influence Coefficient Method Applied to Subsonic Flows",
AIAA paper 75-50, Jan. 1975.

Ehlers, F.E., Johmnson, F.T., and Rubbert, P.E., "A
Higher Order Panel Method for Linearized Supersonic
Flow", AIAA paper 76-381, July 1976.

Ehlers, F.E., Epton, M.A., Johnson F.T., Magnus, A.E.,
and Rubbert, P.E. "An Improved Higher Order Panel
Method for Linearized Supersonic Flow'", AIAA paper 78-
15, Jan. 1978,

Ehlers, F.E., Epton, M.A.,, et al. "Improved Higher-
Order Panel Method for Linearized Supersonic Flow', AIAA
Journal Vol.17, No.3, March 1979,

----- . A Higher Order Panel Method for Linearized
Supersonic Flow, NASA CR-3062, May 1970.
Cenko, A., Tinoco, E.N., Dyer, R.D., and De Jongh, J.E.,

"PANAIR-Applications to Weapons Carriage and
Separation'", AIAA paper 80-0187, Jan. 1980.

225




(Ad

54.

53.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Ty vy

Thomas, J.L. and Miller, D.S., "Numerical Comparisons of
Panel Methods at Subsonic and Supersonic Speeds'", AIAA
paper 79-0404, Jan 1979,

Landrum, E.J. and Miller, D.S., "Assessment of
Analytical Methods for the Prediction of Supersonic Flow
over Bodies', AIAA paper 80-71, Jan. 1980.

Karamcheti, K. Principles of Ideal-Fluid Aerodynamics,
John Wiley, N.Y. 1966.

Hess, J., Johnson, F.T., and Rubbert, P.E. 'Panel
Methods'" , AIAA Panel Methods Workshop Notebook, 1978.

Craggs, J.W. and Maugler, K.W. "Some Remarks on the
Behaviour of Surface Source Distributions Near the Edge
of a Body'", RAE Technical Report 71085, April 1971.

Tricomi, F. Integral Equations, Interscience
Publishers, N.Y., 1957.

Mikhlin, S.G. Integral Equations (translated by A.H.
Armstrong), Pergamon Press, N.Y., 1957.

Lee, D.A.,, "Integral Equations-Lecture Notes'", Air Force
Institute of Technology, WPAFB, Ohio, 1977.

Sternberg, W.J. and Smith, T.L. The Theory of Potential

and Spherical Harmonies, University of Toronto Press,
Toronto, 1946.

Mikhlin, S.G. Linear Integral Equations, Hindustan
Publishing Corp., Delhi, 1960,

Pogorzelski, Ww. Integral Equations and Their

Applications Vol. I, Pergamon Press, N.Y., 1966.

Martensen, E. 'Calculation of the Pressure Distribution
on Thick Grid Airfoils by Means of Fredholm's Integral
Equations of the Second Kind", translated by K Bennett
Howe from Mitteilungun Aus Dem Max-Planck-Institute fur
Stromungsforschung und der Aerodynamischen
versuchsanstalt, No.23, Gottingen, 1959.

Johnson, C.D. "The Approximation of Plane Curves by

Circular-Arc-Based Elements", Ph.D. thesis, University
of California, Berkeley, Dec. 1977.

226




67.

68,

69.

70.

Sections, Dover Publications, N.Y., 1959,

International Mathematical and Statistical Library
(IMSL) Reference Manual, Vol. I, June, 1980.

Abbott, I.H. and Von Doenhoff, A.E. Theory of Wing

Gradsteyn, 1I.S., and Ryzhik, I.M. Table of Integrals,
Series, and Products, Academic Press, New York, 1965.

Selby, S. ed. Standard Mathematical Tables, CRC Press,
Cleveland, 1973.

227




®

Appendix A

Continuity Coefficient Matrices

The matrix equations governing singularity strength

continuity across panel junctures are given by eq.51 as

Q-1
Z[CkC”QkI =0 C=0,1,...3 (51)
k=0

where the C C

K are obtained from eqs.49 and 50. These
matrices have the same form, shown in eq.70, for all values
of C and k. Note that the elements of the matrices do de-
pend on C and k but they have not been marked as such to re-
duce the complexity of the notation. For a given C and k
these elements depend on panel geometric characteristics as
defined in Fig 12. The elements themselves are defined in
Tables IX and X for C=1,2 and 3. For the case C=0 all el-
ements are zero., It should be noted also that the last row
in each matrix, which destroys its bandedness, defines a re-
lationship between the first and the last panel. In some
cases, such as where a slope discontinuity exists across
these panels, the conditions of continuity may be slightly

modified.

228




». Ck = . . (70)

229

v, AT L, PO DU P U SR U DTNy Sy intuinseinnde .M-



L

N_.M N_.Q
L
A.@Nz_m-_owmoumv_mz_mm- A.ouc_m-_wumouvm-
L L ¢
9S0d "o uLsg 9 LULs
b cUts to ZUtLs
£ 4
A

N°""fL =1 ._m 40 waoyg

X1 378vl

230




TABLE X

Form of fi i=1,...

k
0 1 2 3
-e; e, -e, e,
0 -e, e, -e,
0 e, -e, e,
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Appendix B

Velocity Influence Coefficients

In this appendix the normal and tangential velocity
influence coefficient matrices [Rk] and [Tk] will be
computed. These matrices give the velocity at any point
in the field that is induced by a source or vortex singu-
larity distributed on a circular arc. Also the velocity
influence coefficients for a reverse curvature panel, which

are needed to model a general airfoil, will be developed.

Source Distribution

Referring to Fig 12 and 61, the problem is to compute
the velocity at a point P(r,0) due to a source distribu--

tion on a circular arc panel. The velocity is given by

' _ 1 _ 1 (3672 .12 "

where
¢ = fc log R dl
B
R? = r?+a2-2ar cos(8-6,)
Now

3 3/0 BRR['ar d1
B
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Figure 61.

Panel Influence at a Point P.
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where

d1
Thus
39
ar
Now let
d
Then
9
ar
or
3¢
ar
and
Vr(r,e) =
Similarly for 3_
a8
3¢
e

adb, , %% =r - a cos(6-8,)

Or+s

Jr a(8,) 2r—a cos(68-8,)
r

+a?-2ar cos(6-8,)

adé6 0

O)M-s

_ r’+a?
2ar

o
-
|

0(8y)[r-a cos(6-6,)]1d6,
2ar{D-cos(8-8,)]

0(89)[d-cos(8~6,)1d0,
D-cos(68-=8y)

1 jf g(69)[d-cos(6-0,)]d6,

D-cos(6=6,)

=i e}

QJIQ)

a] §-5]
[o )
=
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SR _ ar sin(6-6,)
E):] R
Therefore
2 eM+6

1 0(08,)sin(0-6,)d06,
9 Ve(r,e) 4rd ./~ D-cos(8-68,4)

b -
LE! 8y~

Now

Q-1
3(8o) Z q, s1in*(80-0,)
k=0

so that the general term is

6M+6 Kk
q sin  (8,¢~6,,)[d-cos(8-6,)]d6,
v Er 8) = X, M (72)
T ) 4md D-cos(6-8,)
QM-6
8, +96 X
K Qe sin (eo-eM)sin(e-eu)deo
Ve (r,8) = 27 Jr ~ D-COS(6-04) (73)

Note that the integrands here are well behaved for r#a ,
since then D>1 and D-cos(6-684)#¥0 , but at r=a , D=1
so the point 6,=68 then requires special care. These ex-
pressions will be integrated assuming r#a , and then the

limit as r+a of the results will be taken.
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egration for r#a .

To integrate these expressions

the following transformation is made:

q .k
k sin (X+e-eM)|d-cosX|dX
(r’e) —

D-cosX

.k .
~Qy sin (X+6-6M)81nXdX

D-cosX

= (1-D?)+2DW-W?2

Let
X = 06,4-6
X1 = 8,=6-0 , Xz = 0,+6-0
GO-GM = X+6-6M
Therefore
X,
v, = Znd
X,
X,
v.5(r,0) =
g o 4nd
Xy
Now let
W = D-cos X
and
y = 1-cos?X = 1-(D-W)?
or
y = a+bw+cw?
where
a = 1-D?
b = 2D
c = =1
Note that
dw = sinX dX
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4 RS

L sin X = /y
i;:"ﬁ The integrals in eqs.74 and 75 can be obtained by reduction
to the following standard forms (Refs 69 and 70):

/’ﬂ = -sin~'(cosX) = -sin”' (D-W) (76a)
vy
f dw =~ _ __2 Tav.n'd;'-ﬁ = Tangs (76b)
5w /DT D-1
L~ Yy d & .
_ Y2 A% . 5 + D[ +(1-p2) [I¥ (76¢)
'y 'y
/‘wzdw - -W;3D /7 o+ (Dz"'i')fﬂ;' (76e)
%7 Y w

Note that eq.76a evaluated at the integration limits gives
2

X
j aw _[sin'l(cosxz)-sin-l(cole)] = X=X,
X

1

a37
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Using the above in eqs.74 and 75, and letting

2(d-D)
/D7=1

Tan~

8,+6=6
Fi(r 6) = /D* -1 M ‘

(77)

= D-cos(6-6+6y)
Fao(r,8) ln;D-cos(-G-e'l'eM) (78)

X2=6-6+6 X,=-8-06+0 w=§+0-9

M M M

The following expressions for the velocities in the r and
8 directions due to a source distribution on a circular

arc are obtained for k=0 to k=3 .

For k=0
V.'(r,0) = z3% {26+(d-D)Fy(r,8)} (79a)
Vy'(r,8) = 2% Fa(r,8) | (79b)
For k=1

Vr‘(r,e) = Z%é{[(d—D)Fz(r,e)-cos(Xz)+cos(X1)]cos(e—eM)

+[Sin(X2)-sin(X1)-(d-D)26+DF1(r,e)]sin(e-eM)}

(80a)
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Vo'(r,8) = 72h{[2D8+sin(X;)-sin(X;)-(D?-1)F;(r,8)]cos(8-8,)
+[DF2(r,6)+cos(Xz)—cos(X1)]sin(e-em)} (80Db)
For k=2
2 _ Q2 ]s_ .2 . P - sin2X, +sin2uw
Vr (r,e) = ZImqlces (e-eM)l(d—D)[31nX2 51nX” 4
+26[D(d-D)+§]—(Dz-l)(d—D)F1(r,9)
+sin2(e-6M)[D(d-D)Fz(r,6)+(d-D)[cost-cosX1
2 2
- cos”X;-cos X1]+sin2(6—6M) [(D(D-d)-le)ZG-(d-D)
+ [sinK,-sinz,| + Si02Xetsin20 ipz 4 pyr, (r 0 )]
(81a)
V.2(r 9) = 232 cos?(g-86 )’coszm-coszxz -D(cosX,-cosw)
) ’ 4nd M 2 2

L

-(Dz-l)Fz(r,e)J+sin2(e-eMi%d(Dz-i)+D(sinxz+sinw)

sin2X,+sin2w

+ Y - D(Dz-l)Fl(r,e)]+sinz(e-6M)

2y _ 2
-[Dze(r,e)+D(cost-c08w)+ gos xg»c°siﬁ]

(81b)
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and for k=3

v.(r,8) =

723 { cos?(6-9,) [(d-D)(1-D*)F(r 0)
+(d-D)[2D(cosX1—cosX2)-§((D—cost)z-(D-cosXI)z)]
+(1-D?)[cosX,-cosX, J+D[(D-cosX,) 2-(D-cosX,) 2]

- 3[(D-cosX;)*~(D-cosX,)]1+3cos?(8-0y)sin(8-0y,)

i 3 i3
[sm ngsm S D(1-D)(sinX,-sinX,)

+ Sng (cosXzsinX,-cosX,sinX, )+(d-D)(D%-%) |

.(xz-X1)+D(1-D2)F1(r,ei}SSinz(e-eM)cos(e-eM)
«[D?(d-D)F,(r,6)+D(3D-2d)(cosX,-cosX;)
+ g%gg(w-cosxz)z—(D-cole)2)

- %((D-cosxz)3-(D—cosX1)3)]+sin3(6-6M)

- 2- : . -
. k 34 _ 11D°-4) (ginx, sinx, )+ 3451TD

e ((D=cosX2)sinX,~-(D=-cosX,)sinX;)
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had - %((D-cosxz)3sian-(D-cosX1)3sinX1)

2
+6D(3-2D2 )+[(a-D) (3R (2-1)1y, 3D
g +(2D?+1)] £$§§522] (832)
3. Vyi(r,o = i%é { cos(6-8,) [Sin3X2§Sin3X1 -(D%-1)

*(sinX;=-s8inX,;)~- g(sinzxz-sinle)

2y2
+8D(3-2D%)+ Llﬁgﬁl— F,(r,e)]+3sin(e-e“)cosz(e-eM)
(*

-ED(I-DZ)Fz(r,e)-(3D2—1)(cosX1-cosX1)
- %2 [(D-cosX2)?-(D~cosX,)? ]+ %[(D-cosx2)3

-(D-cosX;)’]]+3sin2(e-eM)cos(e—eM)[Dz(sinxz-sinxl)

+26D(D2-% )+ g [(D-cosX, )sinX,-(D-cosX, )sinX, ]

sin?X,-sin3X D2?(1-D?) .
23 L + (d_D Fl(r’e)]"'Slna(e-eM)

-[Dze(r.e)+3D2(cosX2-cosX,)+ gg[(D-cosxz)2

-(D-cosX,)?]- %[(D-cosX;)’-(D-cosX,)3]]} (83b)




[Ad

......

Limit as r+a . The above formulas represent the ef-

fect of a source distribution on a circular arc at a point
P(r,6) . They are clearly valid for r#a , but if P lies
on the arc itself they exhibit special limiting behavior.

In this case P(r 8)+P(a 8) with 8e(8,-8,0,+§) and the
unique limiting behavior is contained in terms with the fac-
tor F;(r,9) . Now consider the factor ¢D?*-1/(D-1) in

Eq.77. As

But the tangent term multiplying this factor changes sign de-
pending on the value of 6 relative to the panel. Refer-
ring to Fig. 62 consider a point P; such that 61¢(6M-6,6 +8).

Then both tangent terms in Eq.77 are negative; i.e.

6M+6-61 SM—G-GI
Tan —5 <0 and Tan s <0

Thus as 1r+a with 1r>a the inverse tangent difference

term in Eq.77 becomes

Tan™'(-») - Tan~'(-=) = 0

The same is true for the case of P; , except that the
tangents are positive, For the case of P, , however,
9“+6-62
1
>0
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Figure 62. Limiting Behavior on a Panel as P(r 6)
goes to P(a’e)

Figure 63. Reverse Curvature Formulation.
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and

8, =502
w2 o
Thus
Tan™'(+@)-Tan™ ' (-@) = 7 =(~ 5) = T

As an example, consider Vr(r,e) for the k=0 case, and

let r->a+ . Note:that

lim

r+a L. sgn (r-a)
Therefore

as r+a’ a-D 4

Thus for the case corresponding to P, in Fig 61
+ = L
Vr(a ,0) an [26+27]
While for the cases corresponding to P, or P, ,

+
v.(a,8) = %%[25]

An interesting feature of this expression is that for the
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k=0 case the dependence of 6 is removed by the limiting
process.,

Transformation to Global Coordinates. Egs 79-83 rep-

resent velocities at a point P 1in a polar coordinate sys-
tem based on the circular arc panel, To obtain the global

influence coefficient matrices [ Rk] and [ T ] these

' equations must be transformed by a simple rotation into

tangent and normal velocities defined at the point P

Reverse Curvature Panels

The formulas that have been developed are written in
a polar coordinate system in which the equation of the
panel is r=a ., In addition, the direction of increasing
arc length along an element is assumed to be counterclock-
wise in such a coordinate system. This type of panel will
be referred to as a standard panel. A general cambered
airfoil, however, will have regions of curvature opposite
tc that of a standard panel. By applying a transformation
the formulas for a standard panel can be used to compute
the velocities due to a reverse curvature panel,

The problem is to compute the velocity at a point P
due to a distribution on arc B (Fig 63).. Let T be a
vector defined by connecting the panel endpoints P, and
P, ; and let fi be the direction of the normal to T .

The point P is then obtained by reflecting P about 5.

A

Now it is clear that the velocity at P in the T
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direction due to arc A equals the velocity at P in the
T direction due to arc B . Similarly the velocity at P

in the fi direction due to arc A can be related to the

equivalent velocity at B due to arc B . That is,
Va (P) = Va (B)
TB TA
Va (B) = -Va (B)
g Ba

Thus the velocity at a point P due to either a standard
Oor a reverse curvature panel can be computed in terms of
the lccal panel coordinate system. The components are then
transformed into a global system in which the point is

specified.

Vorticity Distribution

In two dimensions the velocity components induced by a
vortex distribution are directly related to those developed
above for a source distribution. If the velocity due to a

source is Vs where

Then the velocity due to a vortex Vv is

¥V =-v, e +V_e
v es r rs 8

Thus the potential flow problem can be immediately solved
for a vorticity distribution using the equations already

developed. 246
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